ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 15, No. 2, 2022
P. 7-14. Bibliography 40, Engl.
UDC: 615.468
https://doi.org/10.15407/biotech15.02.007
A. V. Oliinyk1, D. O. Farfolameeva1, A. Yu. Galkin1, 2
1 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
2 Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv
Surgical wound infections are the most common patients’ complications in the postoperative period. In the modern clinic, they worsen the disease prognosis and remain the most important and acute health problem in all countries of the world.
The aim of the work was to analyze current scientific data on the peculiarities of the pathogenesis of wound infections and types of their pathogens, as well as drugs of biological origin in the treatment of wound infections.
The paper discusses in detail the problem of infection of wound injuries during surgery and domestic injuries of various kinds. The main pathogens of wound infections are considered. Specific pathogenicity factors for bacteria of the genera Staphylococcus, Pseudomonas, Enterobacteriaceae were analyzed. Based on the analysis of literature sources, a list of drugs of biotechnological origin that can be effectively used in combination therapy for the treatment and prevention of wound infections was determined.
Conclusions. The result is the identification of those mechanisms of pathogenesis of wound infections that determine the effectiveness of the use of drugs of biological origin in this pathology treatment.
Key words: wound infections, contaminations by microorganisms, Staphylococcus, Pseudomonas, Enterobacteriaceae, antibiotics, immunomodulatory.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2022
References
1. Morrison A, Madden C, Messmer J. Management of Chronic Wounds. Prim Care. 2022. 49(1), 85-98. https://doi.org/10.1016/j.pop.2021.10.009
2. Salmanov A. G, Mukharskaya L. M. Problems and ways to solve the problem of epidemiological surveillance of nosocomial infections in surgical hospitals. 2006, 36 p.
3. Locke T, Parsons H, Briffa N, Stott M, de Silva T. I, Darton T. C. A bundle of infection control measures reduces post-operative sternal wound infection due to Staphylococcus aureus but not Gram-negative bacteria: a retrospective analysis of 6,903 patient episodes. J Hosp Infect. 2022, S0195-6701(22)00091-3. https://doi.org/10.1016/j.jhin.2022.03.006
4. Ghenbot Y, Wathen C, Gutierrez A, Spadola M, Cucchiara A, Petrov D. Effectiveness of Oral Antibiotic Therapy in Prevention of Postoperative Wound Infection Requiring Surgical Washout In Spine Surgery. World Neurosurg. 2022, S1878-8750(22)00400-4. https://doi.org/10.1016/j.wneu.2022.03.106
5. Norman G, Goh E. L., Dumville J. C. Negative pressure wound therapy for surgical wounds healing by primary closure. Cochrane Database Syst Rev. 2020. 6(6), CD009261. https://doi.org/10.1002/14651858.CD009261.pub6
6. Lindley L. E., Stojadinovic O., Pastar I, Tomic-Canic M. Biology and Biomarkers for Wound Healing. Plast Reconstr Surg. 2016, 138(3 Suppl), 18S?28S. https://doi.org/10.1097/PRS.0000000000002682
7. Мусалатов Х. А. Хирургия катастроф. Мoscow: Medicine, 1998, 592 p.
8. Schwarzer S, James GA, Goeres D. The efficacy of topical agents used in wounds for managing chronic biofilm infections: A systematic review. J Infect. 2020, 80(3), 261-270. https://doi.org/10.1016/j.jinf.2019.12.017
9. Chelkeba L, Melaku T. Epidemiology of staphylococci species and their antimicrobial-resistance among patients with wound infection in Ethiopia: a systematic review and meta-analysis. J Glob Antimicrob Resist. 2021, S2213-7165(21)00250-2. https://doi.org/10.1016/j.jgar.2021.10.025
10. Abayev Yu. K. Wound infection in surgery: a monograph. Minsk.: Belarus, 2003, 293 p.
11. Volyansky Y. L, Gritsenko I. S, Shirokobokov V. P. Study of the specific activity of antimicrobial drugs. Kyiv. 2004, 38 p.
12. Viltsanyuk O. A., Khutoryansky M. O. Characteristics of pathogens of purulent-inflammatory processes of soft tissues and postoperative purulent complications in patients of general surgical hospital. Kharkiv Surgical School. 2012, 2(53), 84?88.
13. Bessa L. J., Fazii P., Di Giulio M., Cellini L. Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: some remarks about wound infection. International wound journa. 2015, 12(1), 47?52. https://doi.org/10.1111/iwj.12049
14. Raz A., Serrano A. Lawson, C. Thaker M., Alston T., Bournazos S., Fischetti V. A. Lysibodies are IgG Fc fusions with lysin binding domains targeting Staphylococcus aureus wall carbohydrates for effective phagocytosis. Proceedings of the National Academy of Sciences, 2017, 114(18), 4781?4786. https://doi.org/10.1073/pnas.1619249114
15. Suarez Carneiro MAM, Silva LDS, Diniz RM, Immunomodulatory and anti-infective effects of Cratylia mollis lectin (Cramoll) in a model of wound infection induced by Staphylococcus aureus. Int Immunopharmacol. 2021. 100, 108094. https://doi.org/10.1016/j.intimp.2021.108094
16. Kalu I. C., Kao C. M., Fritz S. A. Management and Prevention of Staphylococcus aureus Infections in Children. Infect Dis Clin North Am. 2022, 36(1), 73?100. https://doi.org/10.1016/j.idc.2021.11.006
17. Salmanov A. G. The importance of microbial contamination of the wound in the development of infection in the field of surgery. Mozhayev Ukrainian Journal of Extreme Medicine .2008, No.1.P. 6?8.
18. Cendra MDM, Torrents E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol Adv. 2021;49:107734. https://doi.org/10.1016/j.biotechadv.2021.107734
19. Everett MJ, Davies DT. Pseudomonas aeruginosa elastase (LasB) as a therapeutic target. Drug Discov Today. 2021, 26(9), 2108?2123. https://doi.org/10.1016/j.drudis.2021.02.026
20. Ghosh C., Sarkar P., Issa R., Haldar J. Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance. Trends in microbiology. 2019, 16 p. https://doi.org/10.1016/j.tim.2018.12.010
21. Michalska M., Wolf P. Pseudomonas Exotoxin A: optimized by evolution for effective killing. Frontiers in microbiology. 2015, 6, 963, p. 6. https://doi.org/10.3389/fmicb.2015.00963
22. Rolsma S., Frank D. W., Barbieri J. T., Rolsma S., Frank D. W., Barbieri J. T. Pseudomonas aeruginosa toxins. The Comprehensive Sourcebook of Bacterial Protein Toxin, 2015, 1(4), 133?160. https://doi.org/10.1016/B978-0-12-800188-2.00005-7
23. Datsenko B. M. Clinical and morphological aspects of the pathogenesis of a purulent wound. Clinical surgery. 2005, No. 11, P. 19.
24. Rohatgi A, Gupta P. Natural and synthetic plant compounds as anti-biofilm agents against Escherichia coli O157:H7 biofilm. Infect Genet Evol. 2021, 95, 105055. https://doi.org/10.1016/j.meegid.2021.105055
25. Salgado-Caxito M, Benavides J. A., Adell A. D., Paes A. C., Moreno-Switt A. I. Global prevalence and molecular characterization of extended-spectrum ?-lactamase producing-Escherichia coli in dogs and cats - A scoping review and meta-analysis. One Health. 2021, 12, 100236. https://doi.org/10.1016/j.onehlt.2021.100236
26. Yakobchuk S. O., Antonyuk T. V. Roar Infections of the skin and soft tissues. Clinical and experimental pathology. Chernivtsi: Bukovynian National Medical University. 2014, 13, P. 237 – 241.
27. Thet N., Jenkins A., Bean J., Alves D. Intelligent Wound Dressing for Therapeutic and Diagnostic Management of Wound Infection. In 5th Global Healthcare Conference. Global Science & Technology Forum. 2016.
28. Ligonenko O. V., Digtyar I. I. , Kravtsiv M. I. Features of antibacterial therapy of surgical infections. Хірургічна перспектива : All-Ukrainian collection of scientific works: collection of texts of speeches at the scientific-practical conference (Kharkiv, April 1-2, 2010). Kharkiv: NTMT. 2010, No. 1, P. 112?116.
29. Liu Y. F., Ni P. W., Huang Y., Xie T. Therapeutic strategies for chronic wound infection. Chin J Traumatol. 2022, 25(1), 11?16. https://doi.org/10.1016/j.cjtee.2021.07.004
30. Duquette E, Bhatti P, Sur S, Felbaum DR, Dowlati E. History and Use of Antibiotic Irrigation for Preventing Surgical Site Infection in Neurosurgery: A Scoping Review. World Neurosurg. 2022, 160, 76?83. https://doi.org/10.1016/j.wneu.2022.01.098
31. Homaeigohar S., Boccaccini A. R. Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater. 2020, 107, 25?49. https://doi.org/10.1016/j.actbio.2020.02.022
32. Falcone M, De Angelis B, Pea F. Challenges in the management of chronic wound infections. J Glob Antimicrob Resist. 2021, 26, 140?147. https://doi.org/10.1016/j.jgar.2021.05.010
33. Khimich S. D., Kalinsky O. I., Funikov A. V. Prophylactic use of antibiotics: the path to recovery or the formation of antibiotic resistance and the development of nosocomial infectio. – Kharkiv Surgical School. 2012, 2(53), 97?99
34. Johnson A. C., Buchanan E. P., Khechoyan D. Y. Wound infection: A review of qualitative and quantitative assessment modalities [published online ahead of print, 2021, Nov 27. J. Plast. Reconstr. Aesthet. Surg. 2021, S1748-6815(21)00605-7.
35. Byrne L. W, McKay D. Does perioperative biological therapy increase 30-day post-operative complication ales in inflammatory bowel disease patients undergoing intra-abdominal surgery? A systematic review. Surgeon. 2021, 19(5), e153-e167. https://doi.org/10.1016/j.surge.2020.09.001
36. Chornopyschuk R. I. Local immunocorrection in the complex treatment of infected wounds: a monograph. Vinnitsa. 2017, 210 p.
37. Campanile G., Baruselli P. S., Limone A., D'Occhio M. J. Local action of cytokines and immune cells in communication between the conceptus and uterus during the critical period of early embryo development, attachment and implantation. Implications for embryo survival in cattle: A review. Theriogenology. 2021, 167, 1?12. https://doi.org/10.1016/j.theriogenology.2021.02.020
38. Shtanyuk E. A. Study of antibacterial activity of ointments with levofloxacin and decamethoxine in relation to clinical strains – pathogens of wound infections. Світ медицини та біологі. 2015, No.52. P. 74–77.
39. Study of antimicrobial activity of dioxidine-containing ointments on standard strains of the main pathogens of wound infection / EA Shtanyuk, VV Minukhin, NA Lyapunov, AA Lysokobylka // Universum: Meditsina I pharmacologiya. 2014, 5(6), [Electronic resource]. – Accessable on http://7universum.com/ru/med/archive/item/1292. (In Russian).
40. Jung, I., Jung, D., Zha, Z. Interferon-? inhibits retinal neovascularization in a mouse model of ischemic retinopathy. Cytokine. 2021, 143, 155542. https://doi.org/10.1016/j.cyto.2021.155542
41. Lepp?puska I. M., Rannikko E. H., Laukka M., Low TGF-?1 in Wound Exudate Predicts Surgical Site Infection After Axillary Lymph Node Dissection. J Surg Res. 2021, 267, 302?308. https://doi.org/10.1016/j.jss.2021.05.039
42. Provance, O. K., Geanes, E. S., Lui, A. J., Roy, A., Holloran, S. M., Gunewardena, S., Hagan, C. R., Weir, S., Lewis-Wambi, J. Disrupting interferon-alpha and NF-kappaB crosstalk suppresses IFITM1 expression attenuating triple-negative breast cancer progression. Cancer letters. 2021, 514, 12–29. https://doi.org/10.1016/j.canlet.2021.05.006
43. Wirusanti N. I., Baldridge M. T., Harris V. C. Microbiota regulation of viral infections through interferon signaling [published online ahead of print], 2022 Feb 5]. Trends Microbiol. 2022, S0966-842X(22)00007-5.