ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
Biotechnologia Acta, Т. 14, № 5 , 2021
P. 74-83, Bibliography 53, англ.
UDC: 618.146-006.52-036.2(09)
https://doi.org/10.15407/biotech14.05.074
DETERMINING PROBABILITY OF CANCER CELL TRANSFOMATION AT HUMAN PAPILLOMAVIRUS INFECTION
L. P. Buchatskyi, V. V. Stcherbyc
Taras Shevchenko Kyiv National University
Aim. The purpose of the work was to assess the probability of cancerous transformation of cells for viruses of high and low oncogenic risk.
Results. Using normalized squared error (NSE) for viruses of high (20 strains) and low (153 strains) oncogenic risk, rank statistic of 2-exponential type was build. For productive papillomavirus infection, NSE function was determined as the growing accurate 2-exponent of a cell layer basal to the epithelial surface. Logarithm of NSE numerical values is proportional to the cell entropy that is connected with the availability of virus DNA. To calculate entropy, generalized Hartley formula was used with the informational cell of dimension d: H = NdLOG(NSE), where N is the generalized cell coordinate.
Conclusions. Using a statistical ensemble of E6 proteins separately for viruses of high and low oncogenic risk made it possible to assess the probability of cancerous transformation of cells, which was proportional to the ratio of the area of entropy of cancer transformation to the area of the productive entropy region papillomavirus infection.
Key words: human papillomavirus infection, carcinogenesis, cumulative Hartley entropy.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Walboomers J. M. M., Jacobs M. V., Manos M. M., Bosch F. X., Kummer J. A., Shah K. V., Snijders P. J., Peto J., Meijer C. J., Mu?oz N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 1999, V. 189, P. 12–19. https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F
2. Harald zur Hausen. Papillomaviruses in the causation of human cancers – a brief historical account. Virology. 2009, V. 384, P. 260–265. https://doi.org/10.1016/j.virol.2008.11.046
3. Crosbie E. J., Einstein M. H., Franceschi S., Kitchener H. C. Human papillomavirus and cervical cancer. Lancet. 2013, V. 382, P. 889–999. https://doi.org/10.1016/S0140-6736(13)60022-7
4. Senapati R., Senapati N. N., Dwibedi B. Molecular mechanisms of HPV mediated neoplastic progression. Infectious Agents and Cancer. 2016, V. 11, P. 59. https://doi.org/10.1186/s13027-016-0107-4
5. Castellsagu? X, Munoz N. Chapter 3: Cofactors in human papillomavirus carcinogenesis – role of parity, oral contraceptives and tobacco smoking. J. Natl. Cancer Inst. Monogr. 2003, V. 31, P. 20–28. https://doi.org/10.1093/oxfordjournals.jncimonographs.a003477
6. Castle P. E. How Does Tobacco Smoke Contribute to Cervical Carcinogenesis? J. Virol. 2008, 82 (12), 6084–6086. https://doi.org/10.1128/JVI.00103-08
7. Long Fu Xi, Hughes J. P., Castle P. E., Edelstein Z. R., Wang C., Galloway D. A.,. Koutsky L. A., Kiviat N. B., Schiffman M. Viral Load in the Natural History of Human Papillomavirus Type 16 Infection: A Nested Case–control Study. J. Infect. Dis. 2011, 203 (10), 1425–1433. https://doi.org/10.1093/infdis/jir049
8. Yetimalar H., Kasap B., Cukurova K., Yildiz A., Keklik A., Soylu F. Cofactors in human papillomavirus infection and cervical carcinogenesis. Arch. Gynecol. Obstet. 2012, 285 (3), 805–810. https://doi.org/10.1007/s00404-011-2034-3
9. Jalil E. M., Bastos F. I., dos Santos Melli P. P., Duarte G., Simoes R. T., Yamamoto A. Y., de Morais R. A. A., Quintana S. M. HPV clearance in postpartum period of HIV positive and negative women: a prospective follow-up study. BMC Infect. Dis. 2013, V. 13, P. 564. https://doi.org/10.1186/1471-2334-13-564
10. Sundstrom K., Ploner A., Dahlstrom L. A., Palmgren J., Dillner J., Adami H.-O., Ylitalo N., Spar?n P. Prospective Study of HPV16 Viral Load and Risk of In Situ and Invasive Squamous Cervical Cancer. Cancer Epidemiol. Biomarkers Prev. 2013, 22 (1). 150–158. https://doi.org/10.1158/1055-9965.EPI-12-0953-T
11. Del R?o-Ospina L., Soto-De Le?n S. C., Camargo M., Moreno-P?rez D. A., S?nchez R., P?rez-Prados A., Patarroyo M. E., Patarroyo M. A. The DNA load of six high-risk human papillomavirus types and its association with cervical lesions. BMC Cancer. 2015, V. 15, P. 100. https://doi.org/10.1186/s12885-015-1126-z
12. Tulay P., Serakinci N. The role of human papillomaviruses in cancer progression. J. Cancer Metastasis Treat. 2016, V. 2, P. 201–213. https://doi.org/10.20517/2394-4722.2015.67
13. Doorbar J., Quintb W., Banksc L., Bravo I. G., Stoler M., Broker T. R., Stanley M. A. The Biology and Life-Cycle of Human Papillomaviruses. Vaccine. 2012, 30 (5), F55–70. https://doi.org/10.1016/j.vaccine.2012.06.083
14. Doorbar J., Egawa N., Griffin H., Kranjec C., Murakami I. Human papillomavirus molecular biology and disease association. Rev. Med. Virol. 2015, 25 (1), 2–23. https://doi.org/10.1002/rmv.1822
15. Egawa N., Doorbar J. The low-risk papillomaviruses. Virus Res. 2017, V. 231, P. 119–127. https://doi.org/10.1016/j.virusres.2016.12.017
16. Kajitani N., Satsuka A., Kawate A., Sakai H. Productive Lifecycle of Human Papillomaviruses that Depends Upon Squamous Epithelial Differentiation. Front Microbiol. 2012, V. 3, P. 152. https://doi.org/10.3389/fmicb.2012.00152
17. Akagi K., Li J., Broutian T. R., Xiao W., Jiang B., Rocco J. W., Teknos T. N., Kumar B., Wangsa D., He D., Ried T., Symer D. E., Gillison M. L. Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. Genome Res. 2014, 24 (2), 185–199. https://doi.org/10.1101/gr.164806.113
18. McBride A. A., Warburton A. The role of integration in oncogenic progression of HPV- associated cancers. PLoS Pathog. 2017, 13 (4), e1006211. https://doi.org/10.1371/journal.ppat.1006211
19. Pol S. B. V., Klingelhutz A. J. Papillomavirus E6 oncoproteins. Virology. 2013, V. 445, P. 115–137. https://doi.org/10.1016/j.virol.2013.04.026
20. Roman A., Munger K. The papillomavirus E7 proteins. Virology. 2013, 445 (1–2), 138–168. https://doi.org/10.1016/j.virol.2013.04.013
21. Maglennon G. A., Doorbar J. The Biology of Papillomavirus Latency. Open Virol. J. 2012, 6 (Suppl 2: M4), 190–197. https://doi.org/10.2174/1874357901206010190
22. Gravitt P. E. Evidence and Impact of Human Papillomavirus Latency. Open Virol. J. 2012, 6 (Suppl 2: M5), 198–203. https://doi.org/10.2174/1874357901206010198
23. Brown C. R., Leon M. L., Mu?oz K., Fagioni A., Amador L. G., Frain B., Tu W., Qadadri B., Brown D. R. Human papillomavirus infection and its association with cervical dysplasia in Ecuadorian women attending a private cancer screening clinic. Braz. J. Med. Biol. Res. 2009, 42 (7), 629–636. https://doi.org/10.1590/S0100-879X2009000700007
24. Kaspersen M. D., Larsen P. B., Ingerslev H. J., Fedder J., Petersen G. B., Bonde J., H?llsberg P. Identification of Multiple HPV Types on Spermatozoa from Human Sperm Donors. PLoS One. 2011, 6 (3), e18095.https://doi.org/10.1371/journal.pone.0018095
25. McBride A. A. Oncogenic human papillomaviruses. Phil. Trans. R. Soc. B. 2017, V. 372, P. 20160273. https://doi.org/10.1098/rstb.2016.0273
26. Gravitt P. E., Winer R. L. Natural History of HPV Infection across the Lifespan: Role of Viral Latency. Viruses. 2017, 9 (10), 267. https://doi.org/10.3390/v9100267
27. Plummer M., Schiffman M., Castle P. E. A 2-Year Prospective Study of Human Papillomavirus Persistence among Women with a Cytological Diagnosis of Atypical Squamous Cells of Undetermined Significance or Low-Grade Squamous Intraepithelial Lesion. J. Infect. Dis. 2007, V. 195, P. 1582–1589. https://doi.org/10.1086/516784
28. Burd E. M. Human Papillomavirus and Cervical Cancer. Clin. Microbiol. Rev. 2003, 16 (1), 1–17. https://doi.org/10.1128/CMR.16.1.1-17.2003
29. Marks M. A., Castle P. E., Schiffman M., Gravitt P. E. Evaluation of Any or Type-Specific Persistence of High-Risk Human Papillomavirus for Detecting Cervical Precancer. J. Clin. Microbiol. 2012, 50 (2), 300–306. https://doi.org/10.1128/JCM.05979-11
30. Sudenga S. L., Shrestha S. Key considerations and current perspectives of epidemiological studies on human papillomavirus persistence, the intermediate phenotype to cervical cancer. Int. J. Infect. Dis. 2013, 17 (4), e216–e220. https://doi.org/10.1016/j.ijid.2012.12.027
31. Schiffman M., Wentzensen N. Human Papillomavirus Infection and the Multistage Carcinogenesis of Cervical Cancer. Cancer Epidemiol. Biomarkers Prev. 2013, 22 (4), 553–560. https://doi.org/10.1158/1055-9965.EPI-12-1406
32. Santiago D. N., Heidbuechel J. P. W., Kandell W. M. at al. Fighting Cancer with Mathematics and Viruses. Viruses. 2017, 9 (9), 239. https://doi.org/10.3390/v9090239
33. Pongsumpun P. Mathematical Model of Cervical Cancer due to Human Papillomavirus Infection. Mathematical Methods in Science and Engineering. Proceedings of the 1st Int. Conference on Mathematical Methods & Computational Techniques in Science & Engineering (MMCTSE 2014) Athens, Greece – November 28–30, 2014. P. 157–161.
34. Ribassin-Majed L., Lounes R. A SIS model for Human Papillomavirus transmission. MAP5. 2011-03. 15 pages. 2010. https://hal.archives-ouvertes.fr/hal-00555733v1
35. Obeng-Denteh W., Afrifa R. T., Barnes B. at al. Modeling the Epidemiology of Human Papilloma Virus Infection and Vaccination and Its Impact on Cervical Cancer in Ghana. J. Sci. Res. Rep. 2014, 3 (19), 2501–2518. https://doi.org/10.9734/JSRR/2014/11019
36. Baussano I., Franceschi S., Plummer M. Infection transmission and chronic disease models in the study of infection-associated cancers. Br. J. Cancer. 2014, V. 110, P. 7–11. https://doi.org/10.1038/bjc.2013.740
37. Angstmann C. N., Henry B. I., McGann A. V. A Fractional Order Recovery SIR Model from a Stochastic Process. Bull. Math. Biol. 2016, V. 78, P. 468–499. https://doi.org/10.1007/s11538-016-0151-7
38. Lee S. L., Tameru A. M. A Mathematical Model of Human Papillomavirus (HPV) in the United States and its Impact on Cervical Cancer. J. Cancer. 2012, V. 3, P. 262–268. https://doi.org/10.7150/jca.4161
39. Dasbach E. J., Elbasha E. H., Insinga R. P. Mathematical Models for Predicting the Epidemiologic and Economic Impact of Vaccination against Human Papillomavirus Infection and Disease. Epidemiol. Rev. 2006, V. 28, P. 88–100. https://doi.org/10.1093/epirev/mxj006
40. Goldhaber-Fiebert J. D., Stout N. K., Ortendahl J., Kuntz K. M., Goldie S. J., Salomon J. A. Modeling human papillomavirus and cervical cancer in the United States for analyses of screening and vaccination. Popul. Health Metr. 2007, V. 5, P. 11. https://doi.org/10.1186/1478-7954-5-11
41. Smith R. J., Li J., Mao J., Sahai B. Using within-host mathematical modeling predict the long-term outcome of human papillomavirus vaccines. Canadian Applied Mathematics Quarterly. 2013, 21 (2), 281–299.
42. Haeussler K., Marcellusi A., Mennini F. S. Cost-Effectiveness Analysis of Universal Human Papillomavirus Vaccination Using a Dynamic Bayesian Methodology: The BEST II Study. Value Health. 2015, 18 (8), 956–968. https://doi.org/10.1016/j.jval.2015.08.010
43. Myers E. R., McCrory D. C., Nanda K., Bastian L., Matchar D. B. Mathematical Model for the Natural History of Human Papillomavirus Infection and Cervical Carcinogenesis. Am. J. Epidemiol. 2000, 151 (12), 1158–1171. https://doi.org/10.1093/oxfordjournals.aje.a010166
44. Bureau A., Shiborski S., Hughes J. P. Applications of continuous time hidden Markov models to the study of misclassified disease outcomes. Stat. Med. 2003. 22 (3), 441–462. https://doi.org/10.1002/sim.1270
45. Kang M., Lagakos S. W. Statistical methods for panel data from a semi-Markov process, with application to HPV. Biostatistics. 2007, 8 (2), 252–264. https://doi.org/10.1093/biostatistics/kxl006
46. Mitchell C. E., Hudgens M. G., King C. C. at al. Discrete-time semi-Markov modeling of human papillomavirus Persistence. Stat. Med. 2011, 30 (17), 2160–2170. https://doi.org/10.1002/sim.4257
47. Spitoni Cristian, Verduijn Marion and Putter Hein. Estimation and Asymptotic Theory for Transition Probabilities in Markov Renewal Multi–State Models. Int. J. Biostat. 2012, 8 (1), 23. https://doi.org/10.1515/1557-4679.1375
48. Longet S., Schiller J. T., Bobst M., Jichlinski P., Nardelli-Haefliger D. A Murine Genital-Challenge Model Is a Sensitive Measure of Protective Antibodies against Human Papillomavirus Infection. J. Virol. 2011, 85 (24), 13253–13259. https://doi.org/10.1128/JVI.06093-11
49. De Azambuja K., Barman P., Toyama J. Validation of an HPV16-mediated Carcinogenesis Mouse Model. In vivo. 2014, V. 28, P. 761–768. PMID: 25189887. PMCID: PMC5214601
50. Hu J., Budgeon L. R., Cladel N. M., Balogh K., Myers R., Cooper T. K., Christensen N. D. Tracking vaginal, anal and oral infection in a mouse papillomavirus infection model. J. Gen. Virol. 2015, 96 (12), 3554–3565. https://doi.org/10.1099/jgv.0.000295
51. Jiafen Hu, Nancy M. Cladel, Lynn R. Budgeon, Balogh K. K., Christensen N. D. The Mouse Papillomavirus Infection Model. Viruses. 2017, V. 9, P. 246. https://doi.org/10.3390/v9090246
52. Mandelbrot B. An information theory of the statistical structure of language. In Communication Theory. ed. W. Jackson, Betterworths. 1953, P.486–502.
53. Hartley R. V. L. Transmission of information. Bell Syst. Techn. J. 1928, 7 (3), 535–563. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x