ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 14, No. 5 , 2021
P. 21-37, Bibliography 101, Engl.
UDC: 577.1
https://doi.org/10.15407/biotech14.05.021s
CURCUMIN-BASED MULTIFUNCTIONAL NANOSYSTEMS
Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
The use of multifunctional nanosystems in medicine and research is of contemporary interest.
Aim. The purpose of the work was to summarize publications on the prospects of creating and using nanocontainers based on curcumin (Cur). Cur fluorescence in nanoparticles (NP) makes it possible to investigate the distribution of fluorescent and non-fluorescent components, significantly accelerating the study and implementation of drugs in practice. Particular attention is paid to the use of hydrophobic substances in NP, to penetrate into a living cell.
Understanding the interaction of NP with living cells is extremely important when these particles are used to transport and deliver water-insoluble drugs to cells. Cur is one of the drugs with various and very promising pharmaceutical effects, it is poorly soluble in aqueous media, and the use of nanocarriers is an effective way to significantly increase its bioavailability. Cur has its own fluorescence, which enables to use it in multifunctional fluorescent nanosystems, for example, with Pluronic® micelles.
The use of the fluorescence method makes it possible to trace the stages of interaction of Cur-loaded NP with cultured cells and their localization in cell organelles.
With this approach, nanoscale dynamics of drug distribution and stability is observed over time.
Conclusions. The main conclusion is that for unstable in the aquatic environment drugs such as Cur, it is necessary to use the most hydrophobic nanostructures without traces of water, which include the nuclei of Pluronic® micelles. This method makes it possible to use other poorly water-soluble drugs.
A promising area of nanomedicine is the creation of complex bio-compatible nanomaterials based on several active drugs that reduce the toxicity of preparations to normal cells.
Key words: multifunctional nanosystems, nanocontainers for medical preparations, curcumin.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Priskoka A. O., Checkman I. S. Nanotechnologies in development of drug delivery systems. Ukr. Med. J. 2010, 1 (75), I–II, 14–18.(In Ukrainian).
2. Chekman І. S. Nanopharmacology. К.: Zadruga. 2011, 424 p. (In Ukrainian).
3. Prylutska S. V., Grynyuk I. I., Grebinyk S. M., Matyshevska O. P., Prylutskyy Yu. I., Ritter U., Siegmund C., Scharff P. Comparative study of biological action of fullerenes C60 and carbon nanotubes in thymus cells. Mat.-wiss. u. Werkstofftech. 2009, V. 40, P. 238–241. https://doi.org/10.1002/mawe.200900433
4. Prylutska S. V., Burlaka A. P., Prylutskyy Yu. I., Ritter U., Scharff P. Comparative study of antitumor effect of pristine C60 fullerenes and doxorubicin. Biotechnol. 2011, V. 4, Р. 82–87.
5. Prylutska S. V. Using of С60 fullerene complexes with antitumor drugs in chemotherapy. Biotechnol. acta. 2014, 7 (3), 9–20. https://doi.org/10.15407/biotech7.03.009
6. Prylutska S. V., Didenko G. V., Kichmarenko Yu. M., Kruts O. O., Potebnya G. P., Cherepanov V. V., Prylutskyy Yu. I. Effect of C60 fullerene, doxorubicin and their complex on tumor and normal cells of BALB/c mice. Biotechnol. acta. 2014, 7 (1), 60–65. (In Ukrainian) ttps://doi.org/10.15407/biotech7.01.060
7. Kanyuk M. I. Ultrafine fluorescent diamonds in nanotechnology. Biotechnol. acta. 2014, 7 (4), 9–24. (In Ukrainian). https://doi.org/10.15407/biotech7.04.009
8. Kanyuk М. І. Use of nanodiamonds in biomedicine. Biotechnol. acta. 2015, 8 (2), 9–25. https://doi.org/10.15407/biotech8.02.009
9. Kaniuk M. I. Prospects of Curcumin use in Nanobiotechnology. Biotechnol. acta. 2016, 9 (3), P. 23?36. https://doi.org/10.15407/biotech9.03.023
10. Prylutska S. V., Remeniak О. V., Honcharenko Yu. V., Prylutskyy Yu. I. Carbon nanotubes as a new class of materials for nanobiotechnology. Biotechnol. 2009, 2 (2), 55–66. (In Ukrainian).
11. Prylutska S. V., Remenyak О. V., Burlaka A. P., Prylutskyy Yu. I. Perspective of carbon nanotubes application in cancer therapy. Oncology. 2010, 12 (1), 5–9. (In Ukrainian).
12. Sagnou M., Benaki D., Triantis C., Tsotakos T., Psycharis V., Raptopoulou C. P., Pirmettis I., Papadopoulos M., Pelecanou M. Curcumin as the OO bidentate ligand in “2+1” complexes with the [M(CO)3]+ (M = Re, 99m Tc) tricarbonyl core for radiodiagnostic applications. Inorg. Chem. 2011, 50 (4), 1295?1303. https://doi.org/10.1021/ic102228u
13. Asti M., Ferrari E., Groci S., Atti G., Rubagotti S., Lori M., Capponi P. C., Zerbini A., Saladini M., Versari A. Synthesis and characterization of 68Ga-labeled curcumin and curcuminoid Complexes as potential radiotracers for imaging of cancer and Alzheimer’s disease. Inorg. Chem. 2014, 53 (10), 4922–4933. https://doi.org/10.1021/ic403113z
14. Priyadarsini K. I. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules. 2014, 19 (12), 20091–20112. https://doi.org/10.3390/molecules191220091
15. Golub A., Matyshevska O., Prylutska S., Sysoyev V., Ped L., Kudrenko V., Radchenko E., Prylutskyy Yu., Scharff P., Braun T. Fullerenes immobilized at silica surface: topology, structure and bioactivity. J. Mol. Liq. 2003, 105 (2?3), 141–147. https://doi.org/10.1016/S0167-7322(03)00044-8
16. Moorthi C., Kathiresan K. Curcumin–Piperine/Curcumin–Quercetin/Curcumin – Silibinin dual drug- loaded nanoparticulate combination therapy: A novel approach to target and treat multidrug-resistant cancers. J. Medical Hypotheses and Ideas. 2013, 7 (1), 15–20. https://doi.org/10.1016/j.jmhi.2012.10.005
17. Mullaicharam A. R., Maheswaran A. Pharmacological effects of curcumin. Int. J. Nutr. Pharmacol. Neurol. Dis. 2012, 2 (2), 92–99. https://doi.org/10.4103/2231-0738.95930
18. Moghassemi S., Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems. An illustrated review. J. Controlled Release. 2014, V. 185, P. 22–36. https://doi.org/10.1016/j.jconrel.2014.04.015
19. Pitto-Barry A., Barry N. P. E. Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polym. Chem. 2014, V. 5, P. 3291–3297.https://doi.org/10.1039/C4PY00039K
20. Yeo P. L., Lim C. L., Chye S. M., Ling A. P. K., Koh R. Y. Niosomes: a review of their structure, properties, methods of preparation, and medical applications. Asian Biomed. (Res. Rev. News). 2017, 11 (4), 301–14. https://doi.org/10.1515/abm-2018-0002
21. Tavano L., Mauro L., Naimo G. D., Bruno L., Picci N., And? S., Muzzalupo R. Further Evolution of Multifunctional Niosomes Based on Pluronic Surfactant: Dual Active Targeting and Drug Combination Properties. Langmuir. 2016, 32 (35), 8926–8933. https://doi.org/10.1021/acs.langmuir.6b02063
22. Tavano L., Muzzalupo R., Picci N., Cindio B. Co-encapsulation of antioxidants into niosomal carriers: Gastrointestinal release studies for nutraceutical applications. Colloids and Surfaces B: Biointerfaces. 2014, V. 114C, P. 82–88. https://doi.org/10.1016/j.colsurfb.2013.09.058
23. Del Prado-Audelo M L., Rodr?guez-Mart?nez G., Mart?nez-L?pez V., Ortega-S?nchez C., Velasquillo-Mart?nez C., Maga?a J. J., Gonz?lez-Torres M., Quintanar-Guerrero D., S?nchez-S?nchez R., Leyva-G?mez G. Curcumin-loaded poly- ?-caprolactone nanoparticles show antioxidant and cytoprotective effects in the presence of reactive oxygen species. J. Bioactive and Compatible Polymers. 2020, 35 (3), 270–285. https://doi.org/10.1177/0883911520921499
24. Mandal S., Banerjee C., Ghosh S., Kuchlyan J., Sarkar N. Modulation of the photophysical properties of curcumin in nonionic surfactant (Tween-20) forming micelles and niosomes: a comparative study of different microenvironments. J. Phys. Chem. B. 2013, 117 (23), 6957–6968. https://doi.org/10.1021/jp403724g
25. Pusz J., Wolowiec S. Solid compounds of Ce(III), Pr(III), Nd(III), and Sm(III) ions with chrysin. J. Therm. Anal. Calorim. 2012, V. 110, P. 813–821. https://doi.org/10.1007/s10973-011-1989-4
26. Mathew A. P., Uthaman S., Cho K. H., Cho C. S., Park I. K. Injectable hydrogels for delivering biotherapeutic molecules. Int. J. Biol. Macromol. 2018, V. 110, P. 17?29. https://doi.org/10.1016/j.ijbiomac.2017.11.113
27. Xu Y. Q., Chen W. R., Tsosie J. K., Xie X., Li P., Wan J. B., He C. W., Chen M. W. Niosome Encapsulation of Curcumin: Characterization and Cytotoxic Effect on Ovarian Cancer Cells. J. Nanomaterials. 2016, V. 2016, P. 1?9. https://doi.org/10.1155/2016/6365295
28. Roy A., Kundu N., Banik D., Sarkar N. Comparative Fluorescence Resonance Energy-Transfer Study inPluronic Triblock Copolymer Micelle and Niosome Composed ofBiological Component Cholesterol: An Investigation of Effect ofCholesterol and Sucrose on the FRET Parameters. J. Phys. Chem. B. 2016, 120 (1), 131?142. https://doi.org/10.1021/acs.jpcb.5b09761
29. Le T. M. P., Pham V. P., Dang T. M. L., La T. H., Le T. H., Le Q. H. Preparation of curcumin-loaded pluronic F127/chitosan nanoparticles for cancer therapy. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2013, 4 (2), 025001. https://doi.org/10.1088/2043-6262/4/2/025001
30. Hosniyeh H., Fatemeh A., Rassoul D., Aeyed N. O. Chitosan–Pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study. Int. J. Nanomed. 2012, V. 7, P. 1851–1863. https://doi.org/10.2147/IJN.S26365
31. Kozlov M. Y., Melik-Nubarov N. S., Batrakova E. V., Kabanov A. V. Relationship between pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes. Macromolecules. 2000, 33 (9), 3305–3313. https://doi.org/10.1021/ma991634x
32. Prados J., Melguizo C., Ortiz R., V?lez C., Alvarez P. J., Arias J. L., Ru?z M. A., Gallardo V., Aranega A. Doxorubicin-loaded nanoparticles: new advances in breast cancer therapy. Anti-cancer Agents Med. Chem. 2012, 12 (9), 1058–70. https://doi.org/10.2174/187152012803529646
33. Ganguly R., Kunwar A., Dutta B., Kumar S., Barick K., Ballal A., Aswal V., Hassan P. Heat-induced solubilization of curcumin in kinetically stable pluronic P123 micelles and vesicles: An exploit of slow dynamics of the micellar restructuring processes in the aqueous pluronic system. Colloids and surfaces B: Biointerfaces. 2017, V. 152, P. 176–182. https://doi.org/10.1016/j.colsurfb.2017.01.023
34. Chiappetta D. A., Sosnik A. Poly (ethylene oxide)–poly (propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur. J. Pharmac. Biopharmac. 2007, 66 (3), 303–317. https://doi.org/10.1016/j.ejpb.2007.03.022
35. Wenzel J. G. W., Balaji K. S. S., Koushik K., Navarre C., Duran S. H., Rahe C. H., Kompella U. B. Pluronic F127 gel formulations of deslorelin and GnRH reduce drug release and effect in cattle. J. Control. Release. 2002, V. 85, P. 51–59. https://doi.org/10.1016/S0168-3659(02)00271-7
36.Verma G., Hassan P. A. Self assembled materials: design strategies and drug delivery perspectives. Cite this: Phys. Chem. Chem. Phys. 2013, V. 15, P. 17016–17028. https://doi.org/10.1039/c3cp51207j
37. Zhang X., Burt H. M., Mangold G., Dexter D., Von Hoff D., Mayer L., Hunter W. L. Anti-tumor efficacy and biodistribution of intravenous polymeric micellar paclitaxel. Anticancer Drugs. 1997, 8 (7), 696–701. https://doi.org/10.1097/00001813-199708000-00008
38. Shin I. G., Kim S. Y., Lee Y. M., Cho C. S., Sung Y. K. Methoxy poly (ethylene glycol)/?-caprolactone amphiphilic block copolymeric micelle containing indomethacin.: I. Preparation and characterization. J. Control. Release. 1998, 51 (1), 1?11. https://doi.org/10.1016/S0168-3659(97)00164-8
39. Yu B. G., Okano T., Kataoka K., Sardari S., Kwon G. S. In vitro dissociation of antifungal efficacy and toxicity for amphotericin B-loaded poly(ethylene oxide)-block-poly(beta benzyl L aspartate) micelles. J. Control. Release. 1998. 56 (1?3), 285–291. https://doi.org/10.1016/S0168-3659(98)00095-9
40. Jeong Y. I., Nah J. W., Lee H. C., Kim S. H., Cho C. S. Adriamycin release from flower-type polymeric micelle based on star-block copolymer composed of poly(?-benzyl l-glutamate) as the hydrophobic part and poly(ethylene oxide) as the hydrophilic part. Int. J. Pharm. 1999, 188 (1), 49–58. https://doi.org/10.1016/S0378-5173(99)00202-1
41. Allen C., Han J., Yu Y., Maysinger D., Eisenberg A. Polycaprolactone–b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone. J. Control. Release. 2000, 63 (3), 275–286. https://doi.org/10.1016/S0168-3659(99)00200-X
42. Yallapu M. M., Bhusetty Nagesh P. K., Jaggi M., Chauhan S. C. Therapeutic Applications of Curcumin Nanoformulations. AAPS J. 2015, 17 (6), 1341–1356. https://doi.org/10.1208/s12248-015-9811-z
43. Selvam P., El-Sherbiny I. M., Smyth H. D. Swellable hydrogel particles for controlled release pulmonary administration using propellant-driven metered dose inhalers. J. Aerosol Med. Pulm. Drug Deliv. 2011, 24 (1), 25–34. https://doi.org/10.1089/jamp.2010.0830
44. Ye Y., Li Y., Fang F. Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light. Int. J. Nanomedicine. 2014, V. 9, P. 5157–5165. https://doi.org/10.2147/IJN.S71365
45. Pardridge W. M. Blood–brain barrier delivery. Drug Discovery Today. 2007, 12 (1), 54?61. https://doi.org/10.1016/j.drudis.2006.10.013
46. Andrieux K., Couvreur P. Nanomedicine as a promising approach for the treatment and diagnosis of brain diseases: the example of Alzheimer's disease. Ann. Pharm. Fr. Elsevier. 2013, 71 (4), 225–233. https://doi.org/10.1016/j.pharma.2013.04.001
47. Tsai Y. M., Chien C. F., Lin L. C., Tsai T. H. Curcumin and its nano-formulation: the kinetics of tissue distribution and blood–brain barrier penetration. Int. J. Pharmac. 2011, 416 (1), 331–338. https://doi.org/10.1016/j.ijpharm.2011.06.030
48. Gravier J., Sancey L., Hirsj?rvi S., Rustique E., Passirani C., Beno?t J. P., Coll J. L., Texier I. FRET Imaging Approaches for in Vitro and in Vivo Characterization of Synthetic Lipid Nanoparticles. Mol. Pharmac. 2014, 11 (9), 3133–3144. https://doi.org/10.1021/mp500329z
49. Charron D. M., Zheng G. Nanomedicine development guided by FRET imaging. Nano Today. 2018, V. 18, P. 124?136. https://doi.org/10.1016/j.nantod.2017.12.006
50. Hewlings S. J., Kalman D. S. Curcumin: A Review of Its’ Effects on Human Health. Foods. 2017, 6 (10), 92, 1–11. https://doi.org/10.3390/foods6100092
51. Kabeer A., Mailafiya M. M., Danmaigoro A., Rahim E. A., bu Bakar M. Z. A. Therapeutic potential of curcumin against lead-induced toxicity. A review. Biomed. Res. Therapy. 2019, 6 (3), 3053?3066. https://doi.org/10.15419/bmrat.v6i3.528
52. Menon V. P., Sudheer A. R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol. 2007, V. 595, P. 105–125. https://doi.org/10.1007/978-0-387-46401-5_3
53. Cai W., Zhang B., Duan D., Wu J., Fang J. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells. Toxicol. Appl. Pharmacol. 2012, 262 (3), 341–348. https://doi.org/10.1016/j.taap.2012.05.012
54. Lian Y. T., Yang X. F., Wang Z. H., Yang Y., Yang Y., Shu Y. W., Cheng L. X., Liu K. Curcumin serves as a human kv1.3 blocker to inhibit effector memory T lymphocyte activities. Phytother. Res. 2013, 27 (9), 1321–1327. https://doi.org/10.1002/ptr.4863
55. Kocaadam B., Sanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects onhealth. Crit. Rev. Food Sci. Nutr. 2017, 57 (13), 2889–2895. https://doi.org/10.1080/10408398.2015.1077195
56. Ashrafizadeh M., Zarrabi A., Hashemi F., Zabolian A., Saleki H., Bagherian M., Azami N., Bejandi A. K., Hushmandi K., Ang H. L., Makvandi P., Khan H., Kumar A. P. Polychemotherapy with Curcumin and Doxorubicinvia Biological Nanoplatforms: EnhancingAntitumor Activity. Pharmaceutics. 2020, 12 (11), 1084. https://doi.org/10.3390/pharmaceutics12111084
57. Kunnumakkara A. B., Harsha C., Banik K., Vikkurthi R., Sailo B. L., Bordoloi D., Gupta S. C., Aggarwal B. B. Is curcumin bioavailability a problem in humans: lessons from clinical trials. Expert Opinion on Drug Metabolism & Toxicology. 2019, 15 (9), 705–733. https://doi.org/10.1080/17425255.2019.1650914
58. Marchiani A., Rozzo C., Fadda A., Delogu G., Ruzza P. Curcumin and curcumin-like molecules: Fromspice to drugs. Curr. Med. Chem. 2014, 21 (2), 204–222.https://doi.org/10.2174/092986732102131206115810
59. Priyadarsini K. I., Maity D. K., Naik G. H., Kumar M. S., Unnikrishnan M. K., Satav J. G., Mohan H. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic. Biol. Med. 2003, 35 (5), 475–484. https://doi.org/10.1016/S0891-5849(03)00325-3
60. Kunwar A., Barik A., Mishra B., Rathinasamy K., Pandey R., Priyadarsini K. Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim. Biophys. Acta. 2008, 1780 (4), 673?679. https://doi.org/10.1016/j.bbagen.2007.11.016
61. Di Martino R. M. C., Bisi A., Rampa A., Gobbi S., Belluti F. Recent progress on curcumin-based therapeutics: a patent review (2012-2016). Part II: curcumin derivatives in cancer and neurodegeneration. Expert Opinion on Therapeutic Patents. 2017, 27 (8), 953–965. https://doi.org/10.1080/13543776.2017.1339793
62. Anand P., Kunnumakkara A. B., Newman R. A., Aggarwal B. B. Bioavailability of curcumin: problems and promises. Mol. Pharm. 2007, 4 (6), 807–818. https://doi.org/10.1021/mp700113r
63. Basnet P., Skalko-Basnet N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules. 2011, 16 (6), 4567–4598. https://doi.org/10.3390/molecules16064567
64. Gupta S. C., Patchva S., Aggarwal B. B. Therapeutic roles of curcumin: lessons learned from clinical trials. The AAPS J. 2013, 15 (1), 195–218. https://doi.org/10.1208/s12248-012-9432-8
65. Joe B., Vijaykumar M., Lokesh B. R. Biological properties of curcumin-cellular and molecular mechanisms of action. Crit. Rev. Food Sci. Nutr. 2004, 44 (2), 97?111.https://doi.org/10.1080/10408690490424702
66. Naik S. R., ThakareV. N., Patil S. R. Protective effect of curcuminon experimentally induced inflammation, hepatotoxicity and cardiotoxicityin rats: Evidence of its antioxidant property. Exp. Toxicol. Pathol. 2011, 63 (5), 419–431. https://doi.org/10.1016/j.etp.2010.03.001
67. Gupta S. C., Patchva S., Koh W., Aggarwal B. B. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin. Exp. Pharmacol. Physiol. 2012, 39 (3), 283–299. https://doi.org/10.1111/j.1440-1681.2011.05648.x
68. Goel A., Aggarwal B. B. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr. Cancer. 2010, 62 (7), 919–930. https://doi.org/10.1080/01635581.2010.509835
69. Fang J., Lu J., Holmgren A. Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. J. Biol. Chem. 2005, 280 (26), 25284–25290. https://doi.org/10.1074/jbc.M414645200
70. Shi L. Y., Zhang L., Li H., Liu T. L., Lai J. C., Wu Z. B., Qin J. Protective effects ofCurcumin on acrolein-induced neurotoxicity in HT22 mousehippocampal cells. Pharmacol. Reports. 2018, 70 (5), 1040–1046. https://doi.org/10.1016/j.pharep.2018.05.006
71. Mary C. P. V., Vijayakumar S., Shankar R. Metal chelating ability and antioxidant properties of Curcumin-metal complexes ? A DFT approach. J. Mol. Graph. Model. 2018, V. 79, P. 1–14. https://doi.org/10.1016/j.jmgm.2017.10.022
72. Imran M., Ullah A., Saeed F., Nadeem M., Arshad M. U., Suleria H. A. R. Cucurmin, anticancer, and antitumor perspectives: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2018, 58 (8), 1271–1293. https://doi.org/10.1080/10408398.2016.1252711
73. Naksuriya O., Okonogi S., Schiffelers R. M., Hennink W. E. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014, 35 (10), 3365–3383. https://doi.org/10.1016/j.biomaterials.2013.12.090
74. Aggarwal B. B., Harikumar K. B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 2009, 41 (1), 40–59. https://doi.org/10.1016/j.biocel.2008.06.010
75. Hatamipour M., Johnston T. P., Sahebkar A. One molecule, many targetsand numerous effects: the pleiotropy of curcumin lies in its chemicalstructure. Curr. Pharm. Des. 2018, 24 (19), 2129–2136. https://doi.org/10.2174/1381612824666180522111036
76. Perrone D., Ardito F., Giannatempo G., Dioguardi M., Troiano G., Russo L. L., DE Lillo A., Laino L., Muzio L. L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp. Ther. Med. 2015, 10 (5), 1615–1623. https://doi.org/10.3892/etm.2015.2749
77. Sa G., Das T. Sa G.,Das T.Anti cancer effects of curcumin: cycle of life and death. Cell Division. 2008, 3 (14). https://doi.org/10.1186/1747-1028-3-14
78. Rattis B. A. C., Ramos S. G., Celes M. R. N. Curcumin as a Potential Treatment for COVID-19. Front. Pharmacol. 2021, P. 12. https://doi.org/10.3389/fphar.2021.675287
79. Di Martino R. M. C., Luppi B., Bisi A., Gobbi S., Rampa A., Abruzzo A., Belluti F. Recent progress on curcumin-based therapeutics: a patent review (2012?2016). Part I: Curcumin. Expert Opinion on Therapeutic Patents. 2017, 27 (5), 579–590. https://doi.org/10.1080/13543776.2017.1276566
80. Panahi Y., Alishiri G. H., Parvin S., Sahebkar A. Mitigation of systemic oxidative stress by curcuminoids in osteoarthritis: Results of a randomized controlled trial.J. Diet. Suppl. 2016, 13 (2), 209–220. https://doi.org/10.3109/19390211.2015.1008611
81. Shoba G., Joy D., Joseph T., Majeed M., Rajendran R., Srinivas P. S. Influence of piperine on the pharmacokinetics of curcumin inanimals and human volunteers. Planta Med. 1998, 64 (4), 353–356. PMID: 9619120. https://doi.org/10.1055/s-2006-957450
82. Attia Y. M., El-Kersh D. M., Ammar R. A., Adel A., Khalil A., Walid H., Eskander K., Hamdy M., Reda N., Mohsen N. E., Al-Toukhy G. M., Mansour M. T., Elmazar M. M. Inhibition of aldehyde dehydrogenase-1 and p-glycoprotein-mediated multidrug resistance by curcumin and vitamin D3 increases sensitivity to paclitaxel in breast cancer. Chemico-Biological Interactions. 2020, V. 315, P. 108865. https://doi.org/10.1016/j.cbi.2019.108865
83. Priyadarsini K. I. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules. 2014, 19 (12), 20091–20112. https://doi.org/10.3390/molecules191220091
84. Hussain A., Somyajit K., Banik B., Banerjee S., Nagaraju G., Chakravarthy A. R. Enhancing the photocytotoxic potential of curcumin on terpyridyl-lanthanide(III) complex formation. Dalton Trans. 2013, 42 (1), 182–195. https://doi.org/10.1039/C2DT32042H
85. Zhou S. S., Xue X., Wang J. F., Dong Y., Jiang B., Wei D., Wan M. L., Jia Y. Synthesis, optical properties and biological imaging of the rare earth complexes with curcumin and pyridine. J. Mater. Chem. 2012, 22 (42), 22774–22780. https://doi.org/10.1039/c2jm34117d
86. Song Y. M., Xu J. P., Ding L., Hou Q., Liu J. W., Zhu Z. L. Syntheses, characterisation and biological activities of rare earth metal complexes with curcumin and 1,10-phenanthroline-5,6-dione. J. Inorg. Biochem. 2009, 103 (3), 396–400. https://doi.org/10.1016/j.jinorgbio.2008.12.001
87. Cheng L., Hsu C. H., Lin J. K., Hsu M. M., Ho Y. F., Shen T. S., Ko J. Y., Lin J. T., Lin B. R., Wu M. S., Yu H. S., Jee S. H., Chen G. S., Chen T. M., Chen C. A., Lai M. K., Pu Y. S., Pan M. H., Wang Y. J., Tsai C. C., Hsieh C. Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001, 21 (4B), 2895–2900.
88. Mohammed F., Rashid-Doubell F., Taha S., Cassidy S., Fredericks S. Effects of curcumin complexes on MDA?MB?231 breast cancer cell proliferation. Int. J. Oncol. 2020, 57 (2), 445–455. https://doi.org/10.3892/ijo.2020.5065
89. Mourmoura E., Vial G., Laillet B., Rigaudiere J. P., Hininger-Favier I., Dubouchaud H., Morio B., Demaison L. Preserved endothelium-dependent dilatation of the coronary microvasculature at the early phase of diabetes mellitus despite the increased oxidative stress and depressed cardiac mechanical function ex vivo. Cardiovasc Diabetology. 2013, 12 (49), 1169–1186. https://doi.org/10.1186/1475-2840-12-49
90. Rebillard A., Lefeuvre-Orfila L., Gueritat J., Cillard J. Prostate cancer and physical activity: Adaptive response to oxidative stress. Free Radic. Biol. Med.. 2013, V. 60, P. 115–124. https://doi.org/10.1016/j.freeradbiomed.2013.02.009
91. Edwards R. L., Luis P. B., Varuzza P. V., Joseph A. I., Presley S. H., Chaturvedi R., Schneider C. The anti-inflammatory activity of curcumin is mediated by its oxidative metabolites. J. Biol. Chem. 2017, 292 (52), 21243–21252. https://doi.org/10.1074/jbc.RA117.000123
92. Larasati Y. A., Yoneda-Kato N., Nakamae I., Yokoyama T., Meiyanto E., Kato J. Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth. Sci. Rep. 2018, 8 (2039). https://doi.org/10.1038/s41598-018-20179-6
93. Hua C., Kai K., Bi W., Shi W., Liu Y., Zhang D. Curcumin Induces Oxidative Stress in Botrytis cinerea, Resulting in a Reduction in Gray Mold Decay in Kiwifruit. J. Agric. Food Chem. 2019, 67 (28), 7968–7976. https://doi.org/10.1021/acs.jafc.9b00539
94. Ellis E. M. Reactive carbonyls and oxidative stress: Potential for therapeutic intervention. Pharmacol. Ther. 2007, 115 (1), 13–24. https://doi.org/10.1016/j.pharmthera.2007.03.015
95. Rajamanickam V., Yan T., Wu L., Zhao Y., Xu X., Zhu H., Chen X., Wang M., Liu Z., Liu Z., Liang G., Wang Y. Allylated Curcumin Analog CA6 Inhibits TrxR1 and Leads to ROS-Dependent Apoptotic Cell Death in Gastric Cancer Through Akt-FoxO3a. Cancer Manag. Res. 2020, V. 12, P. 247–263. https://doi.org/10.2147/CMAR.S227415
96. Priyadarsini K. I. Photophysics, photochemistry and photobiology of curcumin: Studies from organic solutions, bio-mimetics and living cells. J. Photochem. Photobiol. C: Photochem. Rev. 2009, 10 (2), 81–95. https://doi.org/10.1016/j.jphotochemrev.2009.05.001
97. Patra D., El Khoury E., Ahmadieh D., Darwish S., Tafech R. M. Effect of Curcumin on Liposome: Curcumin as a Molecular Probe for Monitoring Interaction of Ionic Liquids with 1, 2?Dipalmitoyl?sn?Glycero?3?Phosphocholine Liposome. Photochem. Photobiol. 2012, 88 (2), 317–327. https://doi.org/10.1111/j.1751-1097.2011.01067.x
98. Chainoglou E., Hadjipavlou-Litina D. Curcumin analogues and derivatives with anti-proliferative and anti-inflammatory activity: Structural characteristics and molecular targets. Expert Opin. Drug Discov. 2019, 14 (8), 821–842. https://doi.org/10.1080/17460441.2019.1614560
99. Sahebkar A., Serban M. C., Ursoniu S., Banach M. Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. J. Funct. Foods. 2015, V. 18 B, P. 898–909. https://doi.org/10.1016/j.jff.2015.01.005
100. Badria F. A., Ibrahim A. S., Badria A. F., Elmarakby A. A. Curcumin Attenuates Iron Accumulation andOxidative Stress in the Liver and Spleen ofChronic Iron-Overloaded Rats. PLoS ONE. 2015, 10 (7), e0134156.1–13. https://doi.org/10.1371/journal.pone.0134156
101. Yuan J., Liu W., Zhu H., Zhang X., Feng Y., Chen Y., FengH., Lin J. Curcumin attenuates blood-brain barrier disruption after subarachnoid hemorrhage in mice. J. Surg. Res. 2017, 207 (30), 85?91. https://doi.org/10.1016/j.jss.2016.08.090