ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
Biotechnologia Acta, V. 14, No. 2 , 2021
Р. 67-78, Bibliography 26, English
Universal Decimal Classification::504.054+582.998
https://doi.org/10.15407/biotech14.02.067
B. Vijaya Geetha, K S. Shreenidhi, P. Priya Vadhana, N. Purnima, A. Rashminiza, S. Sneha
Department of Biotechnology , Rajalakshmi Engineering College, Rajalakshmi Nagar , Chennai, India
Aim. The key motive was to investigate the toxicological impact of clofibrate and phenol prescribed under human medicine, having potential in water and sediments contamination via input from sewage treatment plants as active pharmaceutical compounds discharge into the environment had kindled present harmful effects on the aquatic ecosystem.
Methods. The present study was performed on the fish model, Pangasius sp.. After acclimatization period, fishes were exposed to the appropriate LC50 concentration of the tested drugs. Their toxic effects were studied in terms of oxidative stress markers, antioxidant status, and protein damage levels in the occupancies environment under the action of bioremediation source, Artemisia pallens, and further proceeded by histopathological study and cortisol level measurements.
Results. The results comparison between fish maintained under the bioremediation source, when exposed to clofibrate and phenol resulted in severe oxidative stress (significant at *P<0.001, #P<0.001, respectively) with significant alterations in antioxidant enzyme activities (significant at *P<0.001, #P<0.001, respectively), histopathological changes and cortisol levels. Bioremediation with the use of Artemisia pallens alleviated both clofibrate- and phenol-induced elevation of cortisol level (significant at *P<0.05, #P<0.05, respectively), indicating pronounced effects on the cell survival via protecting against oxidative damage.
Conclusion. Determination of several biomarkers, including indices of oxidative stress and cortisol levels, may serve as a convenient approach for pollution biomonitoring of aqueous environment. Artemisia pallens water extracts can be applied as an effective bioremediation agent.
Key words. Bioremediation, Artemisia pallens, Fish, Biomarkers.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Jagetia G., Aruna R. Hydroquinone increases the frequency of micronucleiin a dose-dependent manner in mouse bone marrow. Toxicol. Lett. 1997, 93 (2-3), 205-213. https://doi.org/10.1016/S0378-4274(97)00093-3 |
||||
2. Tsutsui T., Hayashi N., Maizumi H., Huff J., Barrett J. C. Benzene-, catechol-, hydroquinone- and phenol-induced cell transformation, gene mutations, chromosome aberrations, aneuploidy, sister chromatid exchanges and unscheduled DNA synthesis in Syrian hamster embryo cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1997, 373 (1), 113-123. https://doi.org/10.1016/S0027-5107(96)00196-0 |
||||
3. Anku W. W., Mamo M. A., Govender P. P. Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods. Phenolic Compounds - Natural Sources, Importance and Applications. 2017, Р. 420-443. https://doi.org/10.5772/66927 |
||||
4. Gelosa P., Banfi C., Gianella A., Brioschi M., Pignieri A., Nobili E., Sironi L. Peroxisome Proliferator-Activated Receptor Agonism Prevents Renal Damage and the Oxidative Stress and Inflammatory Processes Affecting the Brains of Stroke-Prone Rats. J. Pharmacol. Experim. Therapeutics. 2010, 335 (2), 324-331. https://doi.org/10.1124/jpet.110.171090 |
||||
5. Palkar P. S., Anderson C. R., Ferry C. H., Gonzalez F. J., Peters J. M. Effect of prenatal peroxisome proliferator-activated receptor ? (PPAR?) agonism on postnatal development. Toxicol. 2010, 276 (1), 79-84. https://doi.org/10.1016/j.tox.2010.07.008 | ||||
6. Msaada K., Salem N., Bachrouch O., Bousselmi S., Tammar S., Alfaify A., Marzouk B. Chemical Composition and Antioxidant and Antimicrobial Activities of Wormwood (Artemisia absinthiumL.) Essential Oils and Phenolics. J. Chem. 2015, Р. 1-12. https://doi.org/10.1155/2015/804658 |
||||
7. Nigam M., Atanassova M., Mishra A. P., Pezzani R., Devkota H. P., Plygun S., Sharifi-Rad J. Bioactive Compounds and Health Benefits of Artemisia Species. Natural Product Communications. 2019, 14 (7), 1-17. https://doi.org/10.1177/1934578X19850354 |
||||
8. Suresh J., Singh A., Vasavi A., Ihsanullah M., Mary S. Phytochemical and Pharmacological Properties of Artemisia Pallens. Inter. J. Pharmac.Sci. Res. 2011, 2 (12), 3081. https://doi.org/10.13040/IJPSR.0975-8232.2(12).3081-90 |
||||
9. Hunter F. E., Gebicki J. M., Hoffstein P. E., Scott A. (1%3). J. Biol. Chem. V. 238, P. 228-235. | ||||
10. Suryanarayana Rao K., Recknagel R. O. Early onset of lipoperoxidation in rat liver after carbon tetrachloride administration. Experim. Mol. Pathol. 1968, 9 (2), 271-278. https://doi.org/10.1016/0014-4800(68)90041-5 |
||||
11. Moron M., Depierre J., Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta (BBA) - General Subjects. 1979, 582 (1), 67-78. https://doi.org/10.1016/0304-4165(79)90289-7 |
||||
12. Fiske C. H., Subbarow Y. The colorimetric determination of phosphorus. J. Biol. Chem. 1925, 66 (2), 375-400. https://doi.org/10.1016/S0021-9258(18)84756-1 |
||||
13. Reza S., Gholamreza N., Hooman R. Histological study of Hepatopancreas in Iridescent Shark Catfish (Pangasius hypopthalmus). J. Animal and Veterinary Advance. 2009, 8 (7), 1305-1307. https://doi.org/10.1007/s10695-013-9878-3 |
||||
14. Laville N., A??t-A??ssa S., Gomez E., Casellas C., Porcher J. Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes. Toxicol. 2004, 196 (1-2), 41-55. https://doi.org/10.1016/j.tox.2003.11.002 |
||||
15. Misra H. P., Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247 (10), 3170-3175. https://doi.org/10.1016/S0021-9258(19)45228-9 |
||||
16. Beers R. F., Sizer I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952, 195 (1), 133-140. https://doi.org/10.1016/S0021-9258(19)50881-X |
||||
17. Yohana Velasco S., Pablo C. Methodology for determination of plasma determination of plasma cortisol in fish using competitive enzyme-linked immunosorbent Assay (ELISA). Rev. MVZ Cordoba J. 2007, 12 (1), 869-877. https://www.researchgate.net/publication/298859724_Methodology_for_determination_of_plasma_cortisol_in_fish_using_competitive_enzyme-linked_immunosorbent_assay_ELISA | ||||
18. Alak G., Parlak V., Ucar A., Cilingir Yeltekin A., Ozgeris F. B., Ca?lar O., Turkez H. Oxidative and DNA Damage Potential of Colemanite on Zebrafish: Brain, Liver and Blood. Turkish J. Fisheries and Aquatic Sci. 2020, 20 (8), 593-602. https://doi.org/10.4194/1303-2712-v20_8_02 |
||||
19. Faheem M., Lone K. P. Oxidative stress and histopathologic biomarkers of exposure to bisphenol-A in the freshwater fish, Ctenopharyngodon Idella. Brazilian J. Pharmac. Sci. 2018, 53 (3), 1-9. https://doi.org/10.1590/s2175-97902017000317003 |
||||
20. Vijaya Geetha B., Roy Sujata, Subramaniyan Shreenidhi K., Sundararaman T. R. Histopathological and HPLC Analysis in the Hepatic Tissue of Pangasius sp. Exposed to Diclofenac. Polish J. Environ. Studies. 2018, 27 (6), 2493-2498. https://doi.org/10.15244/pjoes/75829 |
||||
21. Triebskorn R., Casper H., Scheil V., Schwaiger J. Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Analytical and Bioanalytical Chem. 2007, 387 (4), 1405-1416. https://doi.org/10.1007/s00216-006-1033-x |
||||
22. Praskova E., Plhalova L., Chromcova L., Stepanova S., Bedanova I., Blahova J., Svobodova Z. Effects of Subchronic Exposure of Diclofenac on Growth, Histopathological Changes, and Oxidative Stress in Zebrafish (Danio rerio). The Scientific World J. 2014, P. 1-5. https://doi.org/10.1155/2014/645737 |
||||
23. Jaya D., Sreejai R. Studies on the changes in lipid peroxidation and antioxidants in fishes exposed to Hydrogen Sulfide. Toxicol. Inter. 2010, 17 (2), 71. https://doi.org/10.4103/0971-6580.72674 |
||||
24. Anton K. Oxidative Stress in Fish induced by Environmental Pollutants. Sci. Papers Animal Sci. Biotechnol. 2017, V. 50, P. 121-125. | ||||
25. Birnie-Gauvin K., Costantini D., Cooke S. J., Willmore W. G. A comparative and evolutionary approach to oxidative stress in fish: A review. Fish and Fisheries. 2017, 18 (5), 928-942. https://doi.org/10.1111/faf.12215 |