ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 6, 2020
Р. 41-49, Bibliography 34, English
Universal Decimal Classification: 616.11
https://doi.org/10.15407/biotech13.06.041
PROSPECTS FOR APPLICATION OF BOVINE PERICARDIAL SCAFFOLD FOR CARDIAL SURGERY
State Institution "Scientific - Practical Medical Center of Pediatric Cardiology and Cardiac Surgery of the Ministry of Health of Ukraine", Kyiv
The aim of the study was to estimate the properties of the scaffold obtained by decellularization of bovine pericardium with a 0.1% solution of sodium dodecyl sulfate. The experiment included standard histological, microscopic, molecular genetic, and biomechanical methods. Scaffold was tested in vitro for cytotoxicity and in vivo for biocompatibility. A high degree of removal of cells and their components from bovine pericardium-derived matrix was shown. Biomechanical characteristics of artificial scaffold were the same as those of the native pericardium. With prolonged contact, no cytotoxic effect on human cells was observed. The biointegration of the scaffold in laboratory animals tissues was noted, which confirms the potential possibility of the implant applicationin cardiac surgery.
Key words:. scaffold, decellularization, cardioimplant, tissue engineering.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. World Health Organization: https://www.who.int/
2. Hoffman J. I. E., Kaplan S. The incidence of congenital heart disease J. Am. Coll. Cardiol. 2002, 39 (12), 1890?1900. https://doi.org/10.1016/s0735-1097(02)01886-7
3. Salameh A., Greimann W., Vondrys D., Kostelka M. Calcification or Not. This Is the Question. A 1-Year Study of Bovine Pericardial Vascular Patches (Cardio Cel) in Minipigs Semin. Thorac. Cardiovasc. Surg. 2018, 30 (1), 54?59. https://doi.org/10.1053/j.semtcvs.2017.09.013
4. Spinali K. L., Schmuck E. G. Natural Sources of Extracellular Matrix for Cardiac Repair Adv. Exp. Med. Biol. 2018, V. 1098, P. 115?130. https://doi.org/10.1007/978-3-319-97421-7_6
5. Pawan K. C., Yi Hong, Ge Zhang. Cardiac tissue-derived extracellular matrix scaffolds for myocardial repair: advantages and challenges. Regen. Biomater. 2019, 6 (4), 185?199. https://doi.org/10.1093/rb/rbz017
6. Xiu-Fang Xu, Hai-Ping Guo, Xue-Jun Ren, Da Gong, Jin-Hui Ma, Ai-Ping Wang, Hai-Feng Shi, Yi Xin, Ying Wu, Wen-Bin Li. Effect of carbodiimide cross-linking of decellularized porcine pulmonary artery valvular leaflets. Int. J. Clin. Exp. Med. 2014, 7 (3), 649–656.
7. Kubo H. Tissue engineering for pulmonary diseases: insights from the laboratory. Respirology. 2012, V. 17, P. 445–454. https://doi.org/10.1111/j.1440-1843.2012.02145
8. Vesely I. Heart valve tissue engineering. Circulation Res. 2005, V. 97, P. 743–755. https://doi.org/10.1161/01.RES.0000185326.04010.9f
9. Rippel R. A., Ghanbari H., Seifalian A. M. Tissue-engineered heart valve: future of cardiac surgery. World J. Surg. 2012, 36 (7), 1581?1591. https://doi.org/10.1007/s00268-012-1535-y
10. Naso F., Gandaglia A. Different approaches to heart valve decellularization: A comprehensive overview of the past 30 years. Xenotransplantation. 2017, 25 (1), 1?10. https://doi.org/10.1111/xen.12354
11. Ramm R., Goecke T., Theodoridis K., Hoeffler K., Sarikouch S., Findeisen K., Ciubotaru A., Cebotari S., Tudorache I., Haverich A., Hilfiker A. Decellularization combined with enzymatic removal of N-linked glycans and residual DNA reduces inflammatory response and improves the performance of porcine xenogeneic pulmonary heart valves in an ovine in vivo model. Xenotransplantation. 2020, 27 (2), 1?12, e12571. https://doi.org/10.1111 / xen.12571
12. Ott H. C., Matthiesen T. S., Goh S. K., Black L. D., Kren S. M., Netoff T. I., Taylor D. A. Perfusiondecellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 2008, V. 14, P. 213–221. https://doi.org/10.1038/nm1684
13. Sarig U., Au-Yeung G. C. T., Wang Y., Bronshtein T., Dahan N., Boey F. Y. C., Venkatraman S. S., Machluf M. Thick acellular heart extracellular matrix with inherent vasculature: a potential platform for myocardial tissue regeneration. Tissue Eng. Part A. 2012, V. 18, 2125–2137. https://doi.org/10.1089/ten.tea.2011.0586
14. Zhou J., Fritze O., Schleicher M., Wendel H.-P., Schenke-Layland K., Harasztosi C., Hu S., Stock U. A. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials. 2010, 31 (9), 2549–2554. https://doi.org/10.1016/j.biomaterials.2009.11.088
15. Jank B. J., Xiong L., Moser P. T., Guyette J. P., Xi Ren, Cetrulo C. L., Leonard D. A., Fernandez L., Fagan S. P., Ott C. H. Engineered composite tissue as a bioartificial limb graft. Biomaterials. 2015, V. 61, P. 246–256. https://doi.org/10.1016/j.biomaterials.2015.04.051
16. Wang B., Borazjani A., Tahai M., Curry A., Simionescu D. T., Guan J., To F., Elder S., Liao J. Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. Journal of Biomedical Materials Research ? Part A. 2010, 94 (4), 1100–1110. https://doi.org/10.1002/jbm.a.32781
17. Schaner P. J., Martin N. D., Tulenko T. N., Shapiro I. M. Decellularized vein as a potential scaffold for vascular tissue engineering. Journal of Vascular Surgery. 2004, 40 (1), 146–153. https://doi.org/10.1016/j.jvs.2004.03.033
18. Gilpin A., Yang Y. Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed. Res. Int. 2017, V. 17. P. 1–13. https://doi.org/10.1155/2017/9831534
19. Grauss R., Hazekamp M., Oppenhuizen F., Vanmunsteren C., Gittenbergerdegroot A., Deruiter M. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur. J. Cardiothorac. Surg. 2005, V. 27, P. 566–571. https://doi.org/10.1016/j.ejcts.2004.12.052
20. Jelev L., Surchev L. A novel simple technique for en face endothelial observations using water-soluble media-’thinned-wall’ preparations. J. Anat. Wiley-Blackwell. 2008, V. 212, P. 192–197. https://doi.org/10.1111/j.1469-7580.2007.00844.x
21. Vunjak-Novakovic G., Freshney R. Ian. Culture of Cells for Tissue Engineering. 2006, 536 p. https://doi.org/10.1002/0471741817
22. Korzhevsky D. E. Application of hematoxylin in histological technique. Morphology. 2007, 132 ( 6), 77–82. (In Russian).
23. Gilbert W. T., Sellaro L. T., Badylak F. S. Decellularization of tissues and organs. Biomaterials. 2006, V. 27, P. 3675–3683. https://doi.org/10.1016/j.biomaterials.2006.02.014
24. Rakhmatia Y. D., Ayukawa Y., Furuhashi A., Koyano K. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J. Prosthodont. Res. 2013, V. 57, P. 3–14. pmid: 23347794 (In Russian). https://doi.org/10.1016/j.jpor.2012.12.001
25. Rieder E., Kasimir M. T., Silberhumer G., Seebacher G., Wolner E., Simon P., Weigel G. Decellularization protocols of porcine heart valves differ significantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J. Thorac. Cardiovasc. Surg. 2004, 127 (2), 399–405. https://doi.org/10.1016 / j.jtcvs.2003.06.017
26. Hudson T. W., Zawko S., Deister C., Lundy S., Hu C. Y., Lee K., Schmidt C. E. Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng. 2004, 10 (11–12), 1641–1651. https://doi.org/10.1089/ten.2004.10.1641
27. Grauss R. W., Hazekamp M. G., van Vliet S., Gittenberger-de Groot A. C., DeRuiter M. C. Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J. Thorac. Cardiovasc. Surg. 2003, 126 (6), 2003–2010. https://doi.org/10.1016/s0022-5223(03)00956-5
28. Oswal D., Korossis S., Mirsadraee S., Wilcox H., Watterson K., Fisher J., Ingham E. Biomechanical characterization of decellularized and cross-liked bovine pericardium. J. Heart. Valve Dis. 2007, V.16, P. 165–174.
29. Andre?e B., Bela K., Horvath T., Lux M., Ramm R., Venturini L., Ciubotaru A., Zweigerdt, Haverich A., Hilfiker A. Successful re-endothelialization of a perfusable biological vascularized matrix (BioVaM) for the generation of 3D artificial cardiac tissue. Basic Res. Cardiol. 2014, 109 (6), 441. https://doi.org/10.1007/s00395-014-0441-x
30. Ning Lia, Yang Lia, Dejun Gong, Cuiping Xia, Xiaohong Liu, Zhiyun Xu. Efficient decellularization for bovine pericardium with extracellular matrix preservation and good biocompatibility. Interactive CardioVascular and Thoracic Surgery. 2018, V. 26, P. 768–776. https://doi.org/10.1093/icvts/ivx416
31. Tran H. L. B., Dihn T. H., Nguyen T. N., To Q. M., Pham A. T. T. Preparation and characterization of acellular porcine pericardium for cardiovascular surgery. Turk. J. Biol. 2016, V. 40, P. 1243?1250. https://doi.org/10.3906/biy-1510-44
32. Keane T. J., Swinehart I. T., Badylak S. F. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 2015, V. 84, P. 25–34. https://doi.org/10.1016/j.ymeth.2015.03.005
33. Amodt J. M., Grainger D. W. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials. 2016, V. 86, P. 68–82. https://doi.org/10.1016/j.biomaterials.2016.02.003 . Epub 2016 Feb 3
34. Oswal D., Korossis S., Mirsadraee S., Berry H. E. Biomechanical characterization of decellularized and cross-liked bovine pericardium. J. Heart Valve Dis. 2007, V. 16, P. 165–174.