ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 6, 2020
Р. 58-63, Bibliography 17, English
Universal Decimal Classification: 619:616.98-078:578.842.2:577.2.08:636.4
https://doi.org/10.15407/biotech13.06.058
DEVELOPMENT OF RECOMBINANT POSITIVE CONTROL FOR AFRICAN SWINE FEVER VIRUS PCR DETECTION
M. Kit, O. Zlenko, O. Solodiankin, V. Bolotin, A.Gerilovych
National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine” of the National Academy of Agrarian Sciences of Ukraine, Kharkiv
Recombinant plasmids containing target sequences are widely used as positive controls for PCR laboratory diagnostics. The aim of the study was development of recombinant positive control containing a fragment of B646L gene of African swine fever virus. The sequence of interest encodes targets of all the PCR assays for African swine fever laboratory diagnostics recommended by World Organisation for Animal Health. A plasmid containing 1763 bp insertion was cloned in E .coli DH5? strain. After purification, the plasmid ten-fold serial dulutions were used as a positive control while PRC testing. A minimal detectable copy number was 20 copies per reaction for both conventional and real-time PCR assays. The developed plasmid could be used as a safe and effective positive control while ASF laboratory diagnostics by PCR.
Key words: African swine fever virus, molecular cloning, PCR, positive recombinant control.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Galindo I., Alonso C. African Swine Fever Virus: A Review. Viruses. 2017, 9 (5), 103. https://doi.org/10.3390/v9050103
2. Revilla Y., P?rez-N??ez D., Richt J. A. African Swine Fever Virus Biology and Vaccine Approaches. Advances in Virus Res. 2018, V. 100, P. 41–74. https://doi.org/10.1016/bs.aivir.2017.10.002
3. Listed Diseases 2020: OIE ? World Organisation for Animal Health. Available at: https://www.oie.int/animal-health-in-the-world/oie-listed-diseases-2020/
4. Beltran-Alcrudo D., Arias M., Gallardo С., Kramer S., Penrith M. L. African Swine Fever: Detection and Diagnosis – A Manual for Veterinarians. Rome: FAO. 2017, 92 p.
5. OIE World Animal Health Department. Global situation of ASF. Report № 17 (2016?2019). Retrieved October 05, 2020. https://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Disease_cards/ASF/Report_17._Global_situation_of_ASF.pdf
6. World Organization for Animal Health. Manual Of Diagnostic Tests And Vaccines For Terrestrial Animals, 8th edition. Chapter 3.8.1. African Swine Fever (Infection With African Swine Fever Virus). OIE . 2019, P. 1?18.
7. Aguero M., Fernandez J., Romero L., Sanchez Mascaraque C., Arias M., Sanchez-Vizcaino J. M. Highly Sensitive PCR Assay for Routine Diagnosis of African Swine Fever Virus in Clinical Samples. J. Clin. Microbiol. 2003, 41 (9), 4431–4434. https://doi.org/10.1128/jcm.41.9.4431-4434.2003
8. Fern?ndez-Pinero J., Gallardo C., Elizalde M., Robles A., G?mez C., Bishop R., Heath L., Couacy-Hymann E., Fasina F. O., Pelayo V., Soler A., Arias M. 2012. Molecular Diagnosis Of African Swine Fever By A New Real-Time PCR Using Universal Probe Library. Transboundary And Emerging Diseases. 2013, 60 (1), 48?58. https://doi.org/10.1111/j.1865-1682.2012.01317.x
9. King D. P., Reid S. M., Hutchings G. H., Grierson S. S., Wilkinson P. J., Dixon L. K., Bastos A. D. S., Drew T. W. Development of a TaqMan® PCR assay with internal amplification control for the detection of African swine fever virus. J. Virological Methods. 2003, 107 (1), 53–61. https://doi.org/10.1016/S0166-0934(02)00189-1
10. Syzykova T. Ye., Melnikova Ye. V., Manoshkin A. V., Petrov A. A., Melnikov D. G., Pantyukhov V. B., Lebedev V. N., Borisevitch S. V. The application of external and internal control objects in case of using of polymerase chain reaction and reverse transcription of polymerase chain reaction. Mikrobiologiya. 2013, Nо 3, P. 41?44. (In Russian).
11. Chan M., Jiang B., Tan T.-Y. Using Pooled Recombinant Plasmids As Control Materials For Diagnostic Real-Time PCR. Clinical Laboratory. 2016, 62 (10), 1?11. https://doi.org/10.7754/clin.lab.2016.160114
12. World Organization for Animal Health. Manual Of Diagnostic Tests And Vaccines For Terrestrial Animals, 8th edition. Chapter 2.2.3 Development and optimisation of nucleic acid detection assays. OIE. 2018, P. 195?205.
13. Qiagen. Critical factors for successful real-time PCR. Real-Time PCR Brochure. 2010, Nо 07, P. 1–63. https://www.gene-quantification.de/qiagen-qpcr-sample-assay-tech-guide-2010.pdf
14. James H. E., Ebert K., Mcgonigle R., Reid S. M., Boonham N., Tomlinson J. A., Hutchings G. H., Denyer M., Oura Ch. A. L., Dukes J. P., King D. P. Detection of African swine fever virus by loop-mediated isothermal amplification. J. Virological Methods. 2010, 164 (1?2), 68–74. https://doi.org/10.1016/j.jviromet.2009.11.034
15. Stegniy B. T., Gerilovych A. P., Goraychuk I. V., Solodyankin O. S., Bolotin V. I., Vovk S. I. Development of regulations for production of positive DNA control for the PCR diagnosis of ASF. Veterynarna medytsyna. 2012, Nо 96, P. 60?62. (In Ukrainian).
16. Wo?niakowski G., Fr?czyk M., Kowalczyk A., Pomorska-M?l M., Niemczuk K., Pejsak Z. Polymerase cross-linking spiral reaction (PCLSR) for detection of African swine fever virus (ASFV) in pigs and wild boars. Scientific Reports. 2017, V. 7, P. 42903. https://doi.org/10.1038/srep42903
17. Wang A., Jia R., Liu Y., Zhou J., Qi Y., Chen Y., Liu D., Zhao J., Shi H., Zhang J., Zhang G. Development of a novel quantitative real-time PCR assay with lyophilized powder reagent to detect African swine fever virus in blood samples of domestic pigs in China. Transbound Emerg. Dis. 2020, 67 (1), 284?297. https://doi.org/10.1111/tbed.13350