ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 5, 2020
Р. 73-86, Bibliography 49, English
Universal Decimal Classification: 579.695
https://doi.org/10.15407/biotech13.05.073
V. M. Hovorukha, O. A. Havryliuk, G. V. Gladka, I. O. Bida, O. B. Tashyrev
Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
Increasing pollution of environment by toxic metals is the urgent problem requiring effective solution worldwide. The goal of the work was to study the dynamics of the interaction of Cr(VI), Mo(VI), W(VI) compounds with obligate anaerobic microorganisms Clostridium butyricum GMP1, which ferment organic compounds with the synthesis of hydrogen. The standard methods were used to determine рН and redox potential (Eh), the gas composition, and the concentration of metals. The application Clostridium butyricum GMP1 was showed to be useful to investigate its interaction with toxic metals. The higher redox potential of metal provided the opportunity for its faster and more effective reduction. The patterns of the reduction of toxic metals Cr(VI), Mo(VI) and W(VI) by obligate anaerobic strain Clostridium butyricum GMP1 were obtained. The experimental data confirmed the thermodynamically calculated correlation between the redox potential of the metal reduction to insoluble form and effectiveness of its removal. Obtained results can serve as the basis for further optimization and development of environmental biotechnologies for wastewater treatment with the simultaneous destruction of solid organic waste and hydrogen synthesis.
Key words: thermodynamic prediction, toxic metals, organic waste, environmental biotechnologies, hydrogen fermentation.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Dixit R., Wasiullah Malaviya D., Pandiyan K., Singh U. B., Sahu A., Shukla R., Singh B. P., Rai J. P., Sharma P. K., Lade H., Paul D. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability. 2015, 7 (2), 2189–2212. https://doi.org/10.3390/su7022189
2. Garg U. K., Kaur M. P., Garg V. K., Sud D. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J. Haz. Mat. 2007, 140 (1), 60–68. https://doi.org/10.1016/j.jhazmat.2006.06.056
3. Hovorukha V., Havryliuk O., Tashyreva H., Tashyrev O., Sioma I. Thermodynamic substantiation of integral mechanisms of microbial interaction with metals. EEEP. 2018, V. 2, P. 55–63. https://doi.org/10.32006/eeep.2018.2.5563
4. Cossich E. S., da Silva E. A., Tavares C. R. G., Filho L. C., Ravagnani T. M. K. Biosorption of Chromium(III) by Biomass of Seaweed Sargassum sp. in a Fixed-Bed Column. Adsorption. 2004, 10 (2), 129–138. https://doi.org/10.1023/B:ADSO.0000039868.02942.47
5. Mohan D., Pittman C. U. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Haz. Mat. 2006, 137 (2), 762–811. https://doi.org/10.1016/j.jhazmat.2006.06.060
6. Cheung K. H., Gu J.-D. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. Int. Biodeterior. Biodegradation. 2007, 59 (1), 8–15. https://doi.org/10.1016/j.ibiod.2006.05.002
7. Congeevaram S., Dhanarani S., Park J., Dexilin M., Thamaraiselvi K. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J. Haz. Mat. 2007, 146 (1), 270–277. https://doi.org/10.1016/j.jhazmat.2006.12.017
8. Dehghani M. H., Sanaei D., Ali I., Bhatnagar A. Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies. J. Mol. Liq. 2016, V. 215, P. 671–679. https://doi.org/10.1016/j.molliq.2015.12.057
9. Huang Y. H., Tang C., Zeng H. Removing molybdate from water using a hybridized zero-valent iron/magnetite/Fe(II) treatment system. Chem. Eng. J. 2012, V. 200–202, P. 257–263. https://doi.org/10.1016/j.cej.2012.06.047
10. Shukor M. Y., Rahman M. F., Suhaili Z., Shamaan N. A., Syed M. A. Bacterial reduction of hexavalent molybdenum to molybdenum blue. World J. Microbiol. Biotechnol. 2009, 25 (7), 1225–1234. https://doi.org/10.1007/s11274-009-0006-6
11. Barton L. L., Fauque G. D. Chapter 2. Biochemistry, Physiology and Biotechnology of Sulfate?Reducing Bacteria. Adv. Appl. Microbiol. 2009, V. 68, P. 41–98. https://doi.org/10.1016/S0065-2164(09)01202-7
12. Biswas K. C., Woodards N. A., Xu H., Barton L. L. Reduction of molybdate by sulfate-reducing bacteria. Biometals. 2009, 22 (1), 131–139. https://doi.org/10.1007/s10534-008-9198-8
13. L’vov N. P., Nosikov A. N., Antipov A. N. Tungsten-Containing Enzymes. Biochemistry. 2002, 67 (2), 196–200. https://doi.org/10.1023/A:1014461913945
14. Strigul N., Koutsospyros A., Arienti P., Christodoulatos C., Dermatas D., Braida W. Effects of tungsten on environmental systems. Chemosphere. 2005, 61 (2), 248–258. https://doi.org/10.1016/j.chemosphere.2005.01.083
15. Lassner E., Schubert W.-D. Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. New York: Kluwer Academic/Plenum Publishers. 1999. https://doi.org/10.1007/978-1-4615-4907-9
16. Ringelberg D. B., Reynolds C. M., Winfield L. E., Inouye L. S., Johnson D. R., Bednar A. J. Tungsten Effects on Microbial Community Structure and Activity in a Soil. J. Environ. Qual. 2009, 38 (1), 103–110. https://doi.org/10.2134/jeq2008.0022
17. Seiler R. L., Stollenwerk K. G., Garbarino J. R. Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada. Appl. Geochem. 2005, 20 (2), 423–441. https://doi.org/10.1016/j.apgeochem.2004.09.002
18. Koutsospyros A., Braida W., Christodoulatos C., Dermatas D., Strigul N. A review of tungsten: From environmental obscurity to scrutiny. J. Haz. Mat. 2006, 136 (1), 1–19. https://doi.org/10.1016/j.jhazmat.2005.11.007
19. Hagen W. R., Arendsen A. F. The bio-inorganic chemistry of tungsten. Metal Sites in Proteins and Models Redox Centres. H. A. O. Hill, P. J. Sadler, A. J. Thomson, Eds. Berlin, Heidelberg: Springer. 1998, 161–192. https://doi.org/10.1007/3-540-62888-6_6
20. Mamais D., Noutsopoulos C., Kavallari I., Nyktari E., Kaldis A., Panousi E., Nikitopoulos G., Antoniou K., Nasioka M. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations. Chemosphere. 2016, V. 152, P. 238–244. https://doi.org/10.1016/j.chemosphere.2016.02.124
21. Mishra S., Bharagava R. N. Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J. Environ. Sci. Health. C Toxicol. Carcinog. 2016, 34 (1), 1–32. https://doi.org/10.1080/10590501.2015.1096883
22. Narayani M., Shetty K. V. Chromium-Resistant Bacteria and Their Environmental Condition for Hexavalent Chromium Removal: A Review. Crit. Rev. Environ. Sci. Technol. 2013, 43 (9), 955–1009. https://doi.org/10.1080/10643389.2011.627022
23. Thatoi H., Das S., Mishra J., Rath B. P., Das N. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: A review. J. Environmental Management. 2014, V. 146, P. 383–399. https://doi.org/10.1016/j.jenvman.2014.07.014
24. Khan A. Isolation of Mo-reducing bacterium in soils from Pakistan. J. Environmental Microbiol. Toxicol. 2014, 2 (1), 1?9. Available: https://journal.hibiscuspublisher.com/index.php/JEMAT/article/view/93
25. Hovorukha V., Tashyrev O., Matvieieva N., Tashyreva H., Havryliuk O., Bielikova O., Sioma I. Integrated Approach for Development of Environmental Biotechnologies for Treatment of Solid Organic Waste and Obtaining of Biohydrogen and Lignocellulosic Substrate. Environmental Res., Engineering and Management. 2018, 74 (4), 31–42. https://doi.org/10.5755/j01.erem.74.4.20723
26. Hovorukha V., Tashyrev O., Tashyreva H., Havryliuk O., Bielikova O., Iastremska L. Increase in efficiency of hydrogen production by optimization of food waste fermentation parameters. Energetika. 2019, 65 (1), 85?94. https://doi.org/10.6001/energetika.v65i1.3977
27. Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solution. Houston: NACE International. Mater. Sci. Forum. 1974, P. 43–54.
28. Berezkin V. G., Drugov Y. S. Gas Chromatography in Air Pollution Analysis. 1st Edition. Elsevier. 1991, 210 p. Available: https://www.elsevier.com/books/gas-chromatography-in-air-pollution-analysis/berezkin/978-0-444-98732-7
29. Farag A. B., El-Wakil A. M., El-Saeed El-Shahawi M. Qualitative and semi-quantitative determination of chromium(VI) in aqueous solution using 1,5-diphenylcarbazide-loaded foam. Analyst. 1981, V. 106, P. 809–812. https://doi.org/10.1039/an9810600809
30. Chapter 2. Chemical principles of test methods: Reactions and reagents. Compr. Anal. Chem. 2002, V. 36, Elsevier, P. 13–67. https://doi.org/10.1016/S0166-526X(02)80022-8
31. Hovorukha V., Tashyrev O. Thermodynamic prognosis of the efficiency of toxic metals extraction from solution by microorganisms and their genetic potential. Collection of scientific works "Factors of experimental evolution of organisms". 2018, V. 23, P. 357?363. https://doi.org/10.7124/FEEO.v23.1041
32. Pourbaix M. Thermodynamics of Dilute Aqueous Solutions: Graphical Representation of the Role of pH and Potential. Thesis, Delft. 1945. Cebelcor Publication F. 227.
33. Smedley P. L., Kinniburgh D. G. Molybdenum in natural waters: A review of occurrence, distributions and controls. Appl. Geochem. 2017, V. 84, P. 387–432. https://doi.org/10.1016/j.apgeochem.2017.05.008
34. Woolfolk C. A., Whiteley H. R. Reduction of inorganic compounds with molecular hydrogen by Micrococcus Lactilyticus I.?: Stoichiometry with Compounds of Arsenic, Selenium, Tellurium, Transition and Other Elements. J. Bacteriol. 1962, 84 (4), 647–658. https://doi.org/10.1128/JB.84.4.647-658.1962
35. Saxena R. S., Saxena G. P. Electrometric Study on Acid-Molybdate System and the Formation of Polyanions. Zeitschrift f?r Physikalische Chemie. 1961, 29 (3?4), 181–187. https://doi.org/10.1524/zpch.1961.29.3_4.181
36. Rajasulochana P., Preethy V. Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resource-Efficient Technologies. 2016, 2 (4), 175–184. https://doi.org/10.1016/j.reffit.2016.09.004
37. Jin W., Du H., Zheng S., Zhang Y. Electrochemical processes for the environmental remediation of toxic Cr(VI): A review. Electrochim. Acta. 2016, V. 191, P. 1044–1055. https://doi.org/10.1016/j.electacta.2016.01.130
38. Hansda A., Kumar V., Anshumali. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World. J. Microbiol. Biotechnol. 2016, 32 (10), 170. https://doi.org/10.1007/s11274-016-2117-1
39. Stasinakis A. S., Thomaidis N. S., Mamais D., Lekkas T. D. Investigation of Cr(VI) reduction in continuous-flow activated sludge systems. Chemosphere. 2004, 57 (9), 1069–1077. https://doi.org/10.1016/j.chemosphere.2004.08.020
40. Guti?rrez-Corona J. F., Romo-Rodr?guez P., Santos-Escobar F., Espino-Salda?a A. E., Hern?ndez-Escoto H. Microbial interactions with chromium: basic biological processes and applications in environmental biotechnology. World. J. Microbiol. Biotechnol. 2016, 32 (12), 191. https://doi.org/10.1016/j.chemosphere.2004.08.020
41. Qian J., Wei L., Liu R., Jiang F., Hao X., Chen G.-H. An Exploratory Study on the Pathways of Cr(VI) Reduction in Sulfate-reducing Up-flow Anaerobic Sludge Bed (UASB) Reactor. Sci. Rep. 2016, 6 (1), 1?12. https://doi.org/10.1038/srep23694
42. Halmi M. I. E., Zuhainis S. W., Yusof M. T., Shaharuddin N. A., Helmi W., Shukor Y., Syed A., Ahmad S. A. Hexavalent Molybdenum Reduction to Mo-Blue by a Sodium-Dodecyl-Sulfate-Degrading Klebsiella oxytoca Strain DRY14. BioMed Res. Inter. Special Issue. 2013, V. 2013, P. 1?8. https://doi.org/10.1155/2013/384541
43. Othman A. R., Bakar N. A., Halmi M. I. E., Johari W. L. W., Ahmad S. A., Jirangon H., Syed M. A. Shukor M. Y. Kinetics of Molybdenum Reduction to Molybdenum Blue by Bacillus sp. Strain A.rzi. BioMed Res. Inter. 2013, V. 2013, P. 1?9. https://doi.org/10.1155/2013/371058
44. Capaldi A., Proskauer B. Beitr?ge zur Kenntniss der S?urebildung bei Typhus-bacillen und Bacterium coli. Zeitschr. f. Hygiene. 1896, 23 (3), 452–474. https://doi.org/10.1007/BF02274958
45. Ahmad S. A., Shukor M. Y., Shamaan N. A., MacCormack W. P., Syed M. A. Molybdate Reduction to Molybdenum Blue by an Antarctic Bacterium. BioMed Res. Inter. 2013, V. 2013, P. 1?10. https://doi.org/10.1155/2013/871941
46. Shukor M. Y., Halmi M. I. E., Rahman M. F. A., Shamaan N. A., Syed M. A. Molybdenum Reduction to Molybdenum Blue in Serratia sp. Strain DRY5 Is Catalyzed by a Novel Molybdenum-Reducing Enzyme. BioMed Res. Inter. 2014, V. 2014, P. 1?8. https://doi.org/10.1155/2014/853084
47. Shukor M. Y., Ahmad S. A., Nadzir M. M. M., Abdullah M. P., Shamaan N. A., Syed M. A. Molybdate reduction by Pseudomonas sp. strain DRY2. J. Appl. Microbiol. 2010, 108 (6), 2050–2058. https://doi.org/10.1111/j.1365-2672.2009.04604.x
48. Rahman M. A., Shukor M. Y. A., Suhaili Z., Mustafa S., Shamaan N. A., Syed M. A. Reduction of Mo(VI) by the bacterium Serratia sp. strain DRY5. J. Environmental Biol. 2009, 30 (1), 65?72.
49. Shukor M. Y., Rahman M. F., Suhaili Z., Shamaan N. A., Syed M. A. Hexavalent molybdenum reduction to Mo-blue by Acinetobacter calcoaceticus. Folia Microbiol. 2010, 55 (2), 137–143. https://doi.org/10.1007/s12223-010-0021-x