ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 5, 2020
Р. 87-100, Bibliography 36, English
UDC:: 579.61
https://doi.org/10.15407/biotech13.05.087
T. V. Meleshko1, 2, O. V. Pallah1, 2, R. O. Rukavchuk2, L. S. Yusko1, 2, N. V. Boyko1,
1 Uzhhorod National University, Department of Clinical Laboratory Diagnostics and Pharmacology Faculty of Dentistry, Ukraine
2Uzhhorod National University, Research Development and Educational Centre of Molecular Microbiology and Mucosal Immunology, Ukraine
The aim of our study was to investigate the gut microbiota in patients with noncommunicable diseases associated with chronic inflammation, namely obesity, type 2 diabetes, atherosclerosis, and cardiovascular disease as well as to find out potential ability of edible plants’ fruits extracts to inhibit the growth of selected conditionally pathogenic microorganisms.
Limited clinical trial was performed and gut microbiota analysis was done using routine methods and by qPCR. The antibacterial properties of edible plants’ fruits in relation to the selected potentially pathogenic microorganisms were studied.
The composition of the intestinal microbiota of obese patients was characterized by an increase in the number of Enterococcus spp. and Lactobacillus spp. along with a decrease in the amount of Escherichia coli. Decreases in E. coli and lactobacilli were observed in patients with type 2 diabetes. In atherosclerosis, an increase in streptococci, enterococci, and enterobacteria was observed, whereas in patients with cardiovascular disease there was an additional increase in staphylococci and candida along with a decrease in E. coli. Decreases in Bifidobacterium spp., Bacteroides spp., Roseburia intestinalis and Akkermansia muciniphila were observed in patients of all groups. The growth of Klebsiella spp. was inhibited by red currant (Ribes rubrum) and plum (Prunus domestica) extracts; Enterobacter spp. – cherry (Prunus avium) extract; Proteus spp. – extracts of blueberry (Vaccinium myrtillus) and dogwood (Cornus mas); Staphylococcus spp. – the extracts of black currant (Ribes nigrum), cherry (Prunus avium), plum (Prunus domestica), jostaberry (Ribes nigrum ? Ribes divaricatum ? Ribes uva-crispa), cherry plum (Prunus cerasifera) and dogwood (Cornus mas)
The obtained data can be used for early diagnosis of noncommunicable diseases and for their prevention with the help of personalized nutrition.
Key words: obesity, type 2 diabetes mellitus, atherosclerosis, cardiovascular diseases, gut microbiota, edible plants fruits.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. WHO Organization Fact sheet: the top 10 causes of death. World Health Organization, Geneva, Switzerland. 2017.
2. West C.E., Renz H., Jenmalm M.C., Kozyrskyj A.L., Allen K.J., Vuillermin P., Prescott S.L.; in-FLAME Microbiome Interest Group. The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiota therapies. J. Allergy Clin. Immunol. 2015, 135(1), 3-13. quiz 14. https://doi.org/10.1016/j.jaci.2014.11.012.
3. Lazar V., Ditu L.M., Pircalabioru G.G., Picu A., Petcu L., Cucu N., Chifiriuc M.C. Gut microbiota, host organism, and diet trialogue in diabetes and obesity. Front Nutr. 2019 Mar 13, 6-21. https://doi.org/10.3389/fnut.2019.00021 .
4. Lloyd-Price J., Abu-Ali G., Huttenhower C. The healthy human microbiome. Genome Med. 2016 Apr 27, 8(1), 51. https://doi.org/10.1186/s13073-016-0307-y.
5. Hotamisligil G.S. Inflammation and metabolic disorders. Nature. 2006 Dec 14, 444(7121), 860-867. https://doi.org/10.1038/nature05485 .
6. Hotamisligil G.S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010 Mar 19, 140(6), 900-917. https://doi.org/10.1016/j.cell.2010.02.034.
7. Forkosh E., Ilan Y. The heart-gut axis: new target for atherosclerosis and congestive heart failure therapy. Open Heart. 2019 Apr 23, 6(1):e000993. https://doi.org/10.1136/openhrt-2018-000993
8. Cox A.J., West N.P., Cripps A.W. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015 Mar, 3(3), 207-15. https://doi.org/10.1016/S2213-8587(14)70134-2.
9. Piya M.K., Harte A.L., McTernan P.G. Metabolic endotoxaemia: is it more than just a gut feeling? Curr Opin Lipidol. 2013 Feb, 24(1), 78-85. https://doi.org/10.1097/MOL.0b013e32835b4431.
10. G?rard P. Gut microbiota and obesity. Cell Mol. Life Sci. 2016 Jan;73(1), 147-62. https://doi.org/10.1007/s00018-015-2061-5.
11. Tazoe H., Otomo .Y., Kaji I., Tanaka R., Karaki S.I., Kuwahara A. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J. Physiol. Pharmacol. 2008 Aug 59, Suppl 2, 251-262.
12. Boulang? C.L, Neves A.L, Chilloux J., Nicholson J.K., Dumas M.E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016 Apr 20, 8(1), 42. https://doi.org/10.1186/s13073-016-0303-2.
13. Remely M., Tesar I., Hippe B., Gnauer S., Rust P., Haslberger A.G. Gut microbiota composition correlates with changes in body fat content due to weight loss. Benef Microbes. 2015, 6(4), 431-439. https://doi.org/10.3920/BM2014.0104.
14. Long A.N., Dagogo-Jack S. Comorbidities of diabetes and hypertension: mechanisms and approach to target organ protection. J. Clin. Hypertens (Greenwich). 2011, 13(4), 244-251. https://doi.org/10.1111/j.1751-7176.2011.00434.x
15. Gui T., Shimokado A., Sun Y., Akasaka T., Muragaki Y. Diverse roles of macrophages in atherosclerosis: from inflammatory biology to biomarker discovery. Mediators Inflamm. 2012, Article ID 693083. https://doi.org/10.1155/2012/693083 .
16. Gregory J.C., Buffa J.A., Org E., Wang Z., Levison B.S., Zhu W., Wagner M.A., Bennett B.J., Li L., DiDonato J.A., Lusis A.J., Hazen S.L. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015 Feb 27, 290(9), 5647-5660. https://doi.org/10.1074/jbc.M114.618249 .
17. Jie Z., Xia H., Zhong S.L., Feng Q., Li S., Liang S., Zhong H., Liu Z., Gao Y., Zhao H., Zhang D., Su Z., Fang Z., Lan Z., Li J., Xiao L., Li J., Li R., Li X., Li F., Ren H., Huang Y., Peng Y., Li G., Wen B., Dong B., Chen J.Y., Geng Q.S., Zhang Z.W., Yang H., Wang J., Wang J., Zhang X., Madsen L., Brix S., Ning G., Xu X., Liu X., Hou Y., Jia H., He K., Kristiansen K. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017 Oct 10, 8(1), 845. https://doi.org/10.1038/s41467-017-00900-1
18. Ercolini, D., and Fogliano, V. Food Design to feed the human gut microbiota. journal of agricultural and food chemistry. 2018, 66(15), 3754-3758. https://doi.org/10.1021/acs.jafc.8b00456.
19. Obesity and overweight WHO Organization Available at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed. 6 October 2020)
20. Care D. Medical Care in Diabetes 2020. Diabetes Care. 2020, 43, S135. https://doi.org/10.2337/dc20-S011
21. T?th ?., Feda?ko J., Pek?rov? T., Hertelyov? Z., Katz M., Mughees A., Kuzma J., ?tefani? P., Kopolovets I. and Pella, D. Elevated circulating pcsk9 concentrations predict subclinical atherosclerotic changes in low risk obese and non-obese patients. Cardiol Ther 6, 281–289 (2017). https://doi.org/10.1007/s40119-017-0092-8.
22. World Health Organization Cardiovascular Disease. Available at: https://www.who.int/cardiovascular_diseases/about_cvd/en/ (accessed. 6 October 2020)
23. Bartosch S, Fite A, Macfarlane G.T., McMurdo M.E. Characterization of bacterial communities in feces from healthy elderly volunteers and hositalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol. 2004, V.70, 3575–3581. https://doi.org/10.1128/AEM.70.6.3575-3581.2004
24. Ramirez-Farias C., Slezak K., Fuller Z., Duncan A., Holtrop G., Louis P. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. British Journal of Nutrition. 2008, 101(4), 541-550. https://doi.org/10.1017/S0007114508019880
25. Gui Q., Li H., Wang A., Zhao X., Tan Z., Chen L., Xu K,. Xiao, C. The association between gut butyrate?producing bacteria and non?small?cell lung cancer. Journal of Clinical Laboratory Analysis. 2020, e23318. https://doi.org/10.1002/jcla.23318
26. Everard A., Belzer C., Geurts L., Ouwerkerk J. P., Druart C., Bindels L. B., Guiot Y., Derrien M., Muccioli G. G., Delzenne N. M., Cani P. D., De Vos, W. M. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the national academy of sciences. 2013, 110(22), 9066-9071. https://doi.org/10.1073/pnas.1219451110
27. Fijan S., ?ulc D., Steyer A. Study of the in vitro antagonistic activity of various single-strain and multi-strain probiotics against Escherichia coli. International journal of environmental research and public health. 2018, 15(7), 1539. https://doi.org/10.3390/ijerph15071539
28. Vinnikova O. I., Morgul I. M. Practicum on microbiology: methodical recommendations. 2nd edition, amended. KhNU named after V. N. Karazin. 2009.
29. Pallah O. V., Meleshko T. V., Bati V. V., Boyko N. V. Extracts of edible plants stimulators for beneficial microorganisms. Biotechnol. Acta. 2019, 12(3), 67-74 https://doi.org//10.15407/biotech12.03.067.
30. Al-Assal K., Martinez A. C., Torrinhas R. S., Cardinelli C., Waitzberg D. Gut microbiota and obesity. Clinical Nutrition Experimental. 2018. V.20, 60-64. https://doi.org/10.1016/j.yclnex.2018.03.001.
31. Petrov V. O., Boyko N. V. Early markers for diagnostics of obesity, diabetes, and metabolic syndrome. Ukraine Patent. 90788 U June, 10 2014.
32. Heidenreich P.A., Trogdon J.G., Khavjou O.A., Butler J., Dracup K., Ezekowitz M.D., Finkelstein E.A., Hong Y., Johnston S.C., Khera A., Lloyd-Jones D.M., Nelson S.A., Nichol G., Orenstein D., Wilson P.W., Woo Y.J. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011 Mar 1, 123(8), 933-944. https://doi.org/10.1161/CIR.0b013e31820a55f5
33. Cho C.E., Taesuwan S., Malysheva O.V., Bender E., Tulchinsky N.F., Yan J., Sutter J.L., Caudill M.A. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Mol. Nutr. Food Res. 2017 Jan, 61(1). https://doi.org/10.1002/mnfr.201600324
34. Biscetti F., Nardella E., Cecchini A.L., Landolfi R., Flex A. The Role of the Microbiota in the Diabetic Peripheral Artery Disease. Mediators Inflamm. 2019, May 8, 4128682. https://doi.org/10.1155/2019/4128682
35. Lazar V., Ditu L.M., Pircalabioru G.G., Picu A., Petcu L., Cucu N., Chifiriuc M.C. Gut microbiota, host organism, and diet trialogue in diabetes and obesity. Front Nutr. 2019 Mar 13, No 6, 21. https://doi.org/10.3389/fnut.2019.00021
36. Patterson E., Ryan P.M., Cryan J.F., Dinan T.G., Ross R.P., Fitzgerald G.F., Stanton C. Gut microbiota, obesity and diabetes. Postgrad Med J. 2016 May, 92(1087), 286-300. https://doi.org/10.1136/postgradmedj-2015-133285