ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 4, 2020
Р. 39-48, Bibliography 33, English
Universal Decimal Classification: 571.27: 581.6
https://doi.org/10.15407/biotech13.04.039
M. Gahramanova 1, 2, A. Ostapchuk 3, O. Molozhava 2, V. Svyatetska 2, M. Rudyk 2, Y. Hurmach 4, R. Dovhyi 2, L. Skivka 2
1 Nargiz Medical Center, Baku, Azerbaijan
2 Educational and Scientific Center "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Ukraine
3 Mechnikov Odesa National University, Ukraine
4 Bogomolets National Medical University, Kyiv, Ukraine
The aim of the work was to explore fatty acid composition of purslane seed water extract and its effect on the metabolic profile of murine peritoneal macrophages. Fatty acid composition was evaluated by gas chromatography–mass spectrometry. Collection of murine macrophages from the peritoneal cavity was done without preliminary sensitization. Reactive oxygen species generation was assayed by flow cytometry and nitroblue tetrazolium test. Phagocytic activity was evaluated by flow cytometry. Nitric oxide production was analyzed in cell supernatants by Griess reaction. Arginase activity was measured in cell lysates by standard colorimetric assay. Reactive oxygen species and nitric oxide production were significantly lower in murine macrophages simultaneously treated with purslane seed water extract and lipopolysaccharide in comparison to macrophages treated with lipopolysaccharide only. Also, the studied extract caused statistically significant increase in arginase activity of unsensitized peritoneal macrophages. That is consistent with the fatty acid content of this extract, since it contained comparatively higher proportion of unsaturated fatty acids exhibiting anti-inflammatory properties, than saturated fatty acids known for their pro-inflammatory effects.
Key words: purslane seed water extract, peritoneal macrophages, reactive oxygen species, phagocytosis, arginine metabolism.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2020\
References
1. Oishi Y., Manabe I. Macrophages in inflammation, repair and regeneration. Int. Immunol. 2018, 30 (11), 511–528. https://doi.org/10.1093/intimm/dxy054
2. Murray P. J. Macrophage polarization. Annu. Rev. Physiol. 2017, V. 79, P. 541–566. https://doi.org/10.1146/annurev-physiol-022516-034339
3. Atri C., Guerfali F. Z., Laouini D. Role of human macrophage polarization in inflammation during infectious diseases. Int. J. Mol. Sci. 2018, 19 (6), 1801. https://doi.org/10.3390/ijms19061801
4. Miao L., Tao H., Peng Y., Wang S., Zhong Z., El-Seedi H., Dragan S., Zengin G., Cheang W.S., Wang Y., Xiao J. The anti-inflammatory potential of Portulaca oleracea L. (purslane) extract by partial suppression on NF-?B and MAPK activation. Food Chem. 2019, V. 290, P. 239–245. https://doi.org/10.1016/j.foodchem.2019.04.005
5. Damodar K., Lee J. T., Kim J. K., Jun J. G. Synthesis and in vitro evaluation of homoisoflavonoids as potent inhibitors of nitric oxide production in RAW-264.7 cells. Bioorg. Med. Chem. Lett. 2018, 28 (11), 2098–2102. https://doi.org/10.1016/j.bmcl.2018.04.037
6. Rahimi V. B., Ajam F., Rakhshandeh H., Askari V. R. A pharmacological review on Portulaca oleracea L.: Focusing on anti-inflammatory, anti-oxidant, immuno-modulatory and antitumor activities. J. Pharmacopunct. 2019, 22 (1), 7–15. https://doi.org/10.3831/KPI.2019.22.001
7. Zhou Y. X., Xin H. L., Rahman K., Wang S. J., Peng C., Zhang H. Portulaca oleracea L.: a review of phytochemistry and pharmacological effects. Biomed Res. Int. 2015, V. 2015, P. 925631. https://doi.org/10.1155/2015/925631
8. Nemzer B., Al-Taher F., Abshiru N. Phytochemical composition and nutritional value of different plant parts in two cultivated and wild purslane (Portulaca oleracea L.) genotypes. Food Chem. 2020, V. 320, P. 126621. https://doi.org/10.1016/j.foodchem.2020.126621
9. Ghasemian M., Owlia S., Owlia M. B. Review of anti-inflammatory herbal medicines. Adv. Pharmacol. Sci. 2016, V. 2016, P. 9130979. https://doi.org/10.1155/2016/9130979
10. Rodriguez P. C., Ochoa A. C., Al-Khami A. A. Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity. Front Immunol. 2017, V. 8, P. 93.https://doi.org/10.3389/fimmu.2017.00093
11. Garc?s R., Mancha M. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal. Biochem. 1993, 211 (1), 139–143.https://doi.org/10.1006/abio.1993.1244
12. Moussa T. A., Almaghrabi O. A. Fatty acid constituents of Peganum harmala plant using Gas Chromatography-Mass Spectrometry. Saudi J. Biol. Sci. 2016, 23 (3), 397–403. https://doi.org/10.1016/j.sjbs.2015.04.013
13. Fedorchuk O., Susak Y., Rudyk M., Senchylo N., Khranovska N., Skachkova O., Skivka L. Immunological hallmarks of cis-DDP-resistant Lewis lung carcinoma cells. Cancer Chemother. Pharmacol. 2018, 81 (2), 373–385. https://doi.org/10.1007/s00280-017-3503-6
14. Rudyk M. P., Pozur V. V., Voieikova D. O., Hurmach Y. V., Khranovska N. M., Skachkova O. V., Svyatetska V. M., Fedorchuk O. G., Skivka L. M., Berehova T. V., Ostapchenko L. I. Sex-based differences in phagocyte metabolic profile in rats with monosodium-glutamate-induced obesity. Sci. Rep. 2018, 8 (1), 5419. https://doi.org/10.1038/s41598-018-23664-0
15. Skivka L. M., Fedorchuk O. G., Rudyk M. P., Pozur V. V., Khranovska N. M., Grom M. Y. Antineoplastic drug NSC631570 modulates functions of hypoxic macrophages. Tsitol. Genet. 2013, 47 (5), 70–82. https://doi.org/10.3103/S0095452713050095
16. Skivka L. M., Prylutska S. V., Rudyk M. P., Khranovska N. M., Opeida I. V., Hurmach V. V., Prylutskyy Y. I., Sukhodub L. F., Ritter U. C60 fullerene and its nanocomplexes with anticancer drugs modulate circulating phagocyte functions and dramatically increase ROS generation in transformed monocytes. Cancer Nanotechnol. 2018, 9 (1), 8. https://doi.org/10.1186/s12645-017-0034-0
17. Molfino A., Amabile M., Monti M., Muscaritoli M. Omega-3 Polyunsaturated Fatty Acids in Critical Illness: Anti-Inflammatory, Proresolving, or Both? Oxid. Med. Cell. Longev. 2017, V. 2017, P. 5987082. https://doi.org/10.1155/2017/5987082
18. Innes J. K., Calder P. C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids. 2018, V. 132, P. 41–48. https://doi.org/10.1016/j.plefa.2018.03.004
19. Medeiros-de-Moraes I. M., Gon?alves-de-Albuquerque C. F., Kurz A. R., Oliveira F. M. d. J., Abreu V. H. P. d., Torres R. C., Carvalho V. F., Estato V., Bozza P. T., Sperandio M. Omega-9 oleic acid, the main compound of olive oil, mitigates inflammation during experimental sepsis. Oxid. Med. Cell. Longev. 2018, V. 2018, P. 6053492. https://doi.org/10.1155/2018/6053492
20. Korbecki J., Bajdak-Rusinek K. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm. Res. 2019, V. 68, P. 915–32. https://doi.org/10.1007/s00011-019-01273-5
21. Zhou H., Urso C. J., Jadeja V. Saturated Fatty Acids in Obesity-Associated Inflammation. J. Inflamm. Res. 2020, V. 13, P. 1–14. https://doi.org/10.2147/JIR.S229691
22. Delfan-Hosseini S., Nayebzadeh K., Mirmoghtadaie L., Kavosi M., Hosseini S. M. Effect of extraction process on composition, oxidative stability and rheological properties of purslane seed oil. Food Chem. 2017, V. 222, P. 61–66. https://doi.org/10.1016/j.foodchem.2016.11.150
23. Tan H. Y., Wang N., Li S., Hong M., Wang X., Feng Y. The Reactive Oxygen Species in Macrophage Polarization: Reflecting Its Dual Role in Progression and Treatment of Human Diseases. Oxid. Med. Cell. Longev. 2016, V. 2016, P. 2795090.https://doi.org/10.1155/2016/2795090
24. Vannella K. M., Wynn T. A. Mechanisms of Organ Injury and Repair by Macrophages. Ann. Rev. Physiol. 2017, V. 79, P. 593–617. https://doi.org/10.1146/annurev-physiol-022516-034356
25. Nonnenmacher Y., Hiller K. Biochemistry of proinflammatory macrophage activation. Cell. Mol. Life Sci. 2018, 75 (12), 2093–2109. https://doi.org/10.1007/s00018-018-2784-1
26. Ambrozova G., Pekarova M., Lojek A. Effect of polyunsaturated fatty acids on the reactive oxygen and nitrogen species production by raw 264.7 macrophages. Eur. J. Nutr. 2010, 49 (3), 133–139. https://doi.org/10.1007/s00394-009-0057-3
27. Zanoni I., Ostuni R., Marek L. R., Barresi S., Barbalat R., Barton G. M., Granucci F., Kagan J. C. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell. 2011, 147 (4), 868–880. https://doi.org/10.1016/j.cell.2011.09.051
28. Dillon S., Agrawal S., Banerjee K, Letterio J., Denning T. L., Oswald-Richter K., Kasprowicz D. J., Kellar K., Pare J., van Dyke T., Ziegler S., Unutmaz D., Pulendran B. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J. Clin. Invest. 2006, 116 (4), 916–928. https://doi.org/10.1172/JCI27203
29. Guti?rrez S., Svahn S. L., Johansson M. E. Effects of Omega-3 Fatty Acids on Immune Cells. Int. J. Mol. Sci. 2019, 20 (20), 5028. https://doi.org/10.3390/ijms20205028
30. Rosales C., Uribe-Querol E. Phagocytosis: A Fundamental Process in Immunity. Biomed. Res. Int. 2017, V. 2017, P. 9042851. https://doi.org/10.1155/2017/9042851
31. Hellmann J., Zhang M. J., Tang Y., Rane M., Bhatnagar A., Spite M. Increased saturated fatty acids in obesity alter resolution of inflammation in part by stimulating prostaglandin production. J. Immunol. 2013, V. 191, P. 1383–1392. https://doi.org/10.4049/jimmunol.1203369
32. Rath M., M?ller I., Kropf P., Closs E. I., Munder M. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front. Immunol. 2014, V. 5, P. 532. https://doi.org/10.3389/fimmu.2014.00532
33. Thomas A. C., Mattila J. T. "Of mice and men": arginine metabolism in macrophages. Front. Immunol. 2014, V. 5, P. 479.https://doi.org/10.3389/fimmu.2014.00479