ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 4, 2020
Р. 49-59 , Bibliography 31, English
Universal Decimal Classification: 579.695
https://doi.org/10.15407/biotech13.04.049
BIOREMOVAL OF TOXIC CHROMIUM(VI) VIA DARK HYDROGEN FERMENTATION OF MULTICOMPONENT ORGANIC WASTE
V .M. Hovorukha, O. A. Havryliuk, G. V. Gladka, O. B. Tashyrev
Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv,
Thermodynamic calculations allow determining optimal metabolic pathways for microbial extraction of toxic soluble hexavalent chromium compounds from contaminated sewage.
The purpose was to predict theoretically and confirm experimentally the possibility of hazardous Cr(VI) removal by hydrogen producing microbiome with simultaneous destruction of multicomponent organic waste and hydrogen synthesis.
The gas composition was determined by the standard gas chromatography method. The redox potential (Eh) and рН of the medium were measured potentiometrically. The Cr(VI) concentration was measured by a photocolorimetric method.
The multicomponent organic waste was effectively destroyed by hydrogen producing microbiome at the absence of chromium. The hydrogen fermentation cycle was not significantly inhibited by addition of Cr(VI). After complete microbial reduction of soluble CrO42– to insoluble Cr(OH)3·nH2O↓ the metabolic parameters returned to initial values.
The optimal pathway of microbial detoxification of toxic Cr(VI) compounds was thermodynamically predicted and experimentally confirmed. The high efficiency of Cr(VI) removal by strict anaerobic hydrogen producing microbiome via dark hydrogen fermentation of multicomponent organic waste was demonstrated. The obtained results can be used for development of novel environmental biotechnology of chromium-containing sewage purification and simultaneous destruction of environmentally hazardous organic waste as well as obtaining of eco-friendly energy carrier biohydrogen.
Key words: thermodynamic prediction, environmental biotechnologies, hydrogen fermentation, biohydrogen synthesis, toxic chromium(VI) compounds, microbial reduction of chromate, multicomponent organic waste destruction.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2020
References
1. Oliveira H. Chromium as an Environmental Pollutant: Insights on Induced Plant Toxicity. J. Bot. 2012, V. 2012, P. 1–8. https://doi.org/10.1155/2012/375843
2. Bhalerao S., Sharma A. Chromium: As an Environmental Pollutant. Int. J. Curr. Microbiol. App. Sci. 2015, 4 (4),732–746.
3. Tchounwou P. B., Yedjou C. G., Patlolla A. K., Sutton D. J. Heavy Metal Toxicity and the Environment. In: Luch A. (eds). Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, Springer, Basel. 2012, V. 101, P. 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6
4. Lunk H. J. Discovery, properties and applications of chromium and its compounds. Chem. Texts. 2015, 1 (1), 1–17. https://doi.org/10.1007/s40828-015-0007-z
5. Peng H., Leng Y., Cheng Q., Shang Q., Shu J., Guo J. Efficient removal of hexavalent chromium from wastewater with electro-reduction. Processes. 2019, 7 (1), 41, 1–12. https://doi.org/10.3390/pr7010041
6. Sanyal T., Kaviraj A., Saha S. Deposition of chromium in aquatic ecosystem from effluents of handloom textile industries in Ranaghat-Fulia region of West Bengal, India. J. Adv. Res. 2015, 6 (6), 995–1002. https://doi.org/10.1016/j.jare.2014.12.002
7. Tang A. N., Jiang D. Q., Jiang Y., Wang S. W., Yan X. P. Cloud point extraction for high-performance liquid chromatographic speciation of Cr(III) and Cr(VI) in aqueous solutions. J. Chromatogr. A. 2004, 1036 (2004), 183–188. https://doi.org/10.1016/j.chroma.2004.02.065
8. Onchoke K. K., Sasu S. A. Determination of Hexavalent Chromium (Cr(VI)) Concentrations via Ion Chromatography and UV-Vis Spectrophotometry in Samples Collected from Nacogdoches Wastewater Treatment Plant, East Texas (USA). Adv. Environ. Chem. 2016, V. 2016, P. 1–10. https://doi.org/10.1155/2016/3468635
9. Focardi S., Pepi M., Focardi S. E. Microbial Reduction of Hexavalent Chromium as a Mechanism of Detoxification and Possible Bioremediation Applications. Biodegrad. – Life Sci. 2013, P. 321–347. https://doi.org/10.5772/56365
10. Kurniawan T. A., Chan G. Y. S., Lo W. H., Babel S. Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 2006, 118 (1–2), 83–98. https://doi.org/10.1016/j.cej.2006.01.015
11. Romanenko V. I., Koren’kov V. N. Pure culture of bacteria using chromates and bichromates as hydrogen acceptors during development under anaerobic conditions. Mikrobiologiia. 1977, 46 (3), 414—417 (In Russian).
12. Sharholy M., Ahmad K., Mahmood G., Trivedi R. C. Municipal solid waste management in Indian cities – A review. Waste Manag. 2008, 28 (2), 459–467.https://doi.org/10.1016/j.wasman.2007.02.008
13. Guerrero L. A., Maas G., Hogland W. Solid waste management challenges for cities in developing countries. Waste Manag. 2013, 33 (1), 220–232. https://doi.org/10.1016/j.wasman.2012.09.008
14. Pourbaix M. Atlas of electrochemical equilibria in aqueous solutions. Houston:NACE International. Mater. Sci. Forum. 1974, P. 43–54.
15. Hovorukha V., Tashyrev O., Tashyreva H., Havryliuk O., Bielikova O., Iastremska L. Increase in efficiency of hydrogen production by optimization of food waste fermentation parameters. Energetika. 2019, 65 (1). https://doi.org/10.6001/energetika.v65i1.3977
16. Hovorukha V., Havryliuk O., Tashyreva H., Tashyrev O., Sioma I. Thermodynamic Substantiation of Integral Mechanisms of Microbial Interaction With Metals. Ecol. Eng. Environ. Prot. 2018, P. 55–63. https://doi.org/10.32006/eeep.2018.2.5563
17. Berezkin V. G. Chemical Methods in Gas Chromatography. Amsterdam–Oxford–New Yourk–Tokio: Elsevier B. V. 1983, 311 p.
18. Zehnder A. J. B., Wuhrmann K. Titanium (III) Citrate as a Nontoxic Oxidation-Reduction Buffering System for the Culture of Obligate Anaerobes Vertebrate Central Nervous System?: Same Neurons Mediate Both Electrical and Chemical Inhibitions. Science. 1975, 194 (6), 1165–166. https://doi.org/10.1126/science.793008
19. Tashyrev O., Govorukha V., Havryliuk O. The Effect of Mixing Modes on Biohydrogen Yield and Spatial Ph Gradient At Dark Fermentation of Solid Food Waste. Ecol. Eng. Environ. Prot. 2017, V. X, P. 53–62. https://doi.org/10.32006/eeep.2017.2.5362
20. Shupack S. I. The chemistry of chromium and some resulting analytical problems. Environ. Health Perspect. 1991, 92 (1), 7–11. https://doi.org/10.1289/ehp.91927
21. Ashida J., Higashi N., Kikuchi T. An electronmicroscopic study on copper precipitation by copper-resistant yeast cells. Protoplasma. 1963, 57 (1–4), 27–32. https://doi.org/10.1289/ehp.91927
22. Lehninger A. L. Principles of biochemistry. 2nd ed. New York: Worth Publishers. 1993, 1013 p.
23. Collet C., Adler N., Schwitzgu?bel J. P., P?ringer P. Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. Int. J. Hydrogen Energy. 2004, 29 (14), 1479–1485. https://doi.org/10.1016/j.ijhydene.2004.02.009
24. Eder A. S., Magrini F. E., Spengler A., da Silva J. T., Beal L. L., Paesi S. Comparison of hydrogen and volatile fatty acid production by Bacillus cereus, Enterococcus faecalis and Enterobacter aerogenes singly, in co-cultures or in the bioaugmentation of microbial consortium from sugarcane vinasse. Environ. Technol. Innov. 2020, V. 18.https://doi.org/10.1016/j.eti.2020.100638
25. Mazareli R. C. da S., Sakamoto I. K., Silva E. L., Varesche M. B. A. Bacillus sp. isolated from banana waste and analysis of metabolic pathways in acidogenic systems in hydrogen production. J. Environ. Manage. 2019, V. 247, P. 178–186. https://doi.org/10.1016/j.jenvman.2019.06.040
26. Valle A., Cantero D., Bol?var J. Metabolic engineering for the optimization of hydrogen production in Escherichia coli: A review. Biotechnol. Adv. 2019, 37 (5), 616–33.https://doi.org/10.3389/fbioe.2019.00351
27. Mirzoyan S., Trchounian A., Trchounian K. Hydrogen production by Escherichia coli during anaerobic utilization of mixture of lactose and glycerol: Enhanced rate and yield, prolonged production. Int. J. Hydrogen Energy. 2019, 44 (18), 9272–9281. https://doi.org/10.1016/j.ijhydene.2019.02.114
28. Poladyan A., Trchounian A. Characterization of Hydrogen Production by Escherichia coli Wild-type and Mutants of Hydrogenases Utilizing Xylose as Fermentation Substrate. Bioenergy Res. 2019, 12 (4), 1033–1341. https://doi.org/10.1007/s12155-019-10035-4
29. Ilias M., Rafiqullah I. M., Debnath B. C., Mannan K. S., Hoq M. M. Isolation and Characterization of Chromium(VI)-Reducing Bacteria from Tannery Effluents. Indian J. Microbiol. 2011, 51 (1), 76–81. https://doi.org/10.1007/s12088-011-0095-4
30. Narayani M., Shetty K. V. Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: A review. Crit. Rev. Environ. Sci. Technol. 2013, 43 (9), 955–1009. https://doi.org/10.1080/10643389.2011.627022
31. Verma T., Garg S. K., Ramteke P. W. Genetic correlation between chromium resistance and reduction in Bacillus brevis isolated from tannery effluent. J. Appl. Microbiol. 2009, 107 (5), 1425–1432. https://doi.org/10.1111/j.1365-2672.2009.04326.x