ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 12, No 4, 2019
Р. 57-64, Bibliography 33, English
Universal Decimal Classification: 547.458.1;612.115.12
https://doi.org/10.15407/biotech12.04.057
THE MECHANISM OF CLOTS FORMATION IN BLOOD PLASMA UNDER THE ACTION OF CHITIN DERIVATIVES
1National University of Life and Environmental Scienсes of Ukraine, Kyiv
2Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, Kyiv
The aim of the research was to find out the clot formation by the action of chitin derivates. The biochemical and immunologic investigation methods such as obtaining of fibrinogen, chitosan derivates, electrophoresis in PAAG, Western blot analysis, ELISE, the activated partial thromboplastin time and prothrombin time coagulological tests were used in these studies. The next results were obtained: chitin derivatives in equal measure cause the clot formation in whole blood, blood plasma and fibrinogen solution; the fibrinogen precipitate formed as a result of their action, practically does not contain fibrin; chitosan does not cause the activation of coagulation factors and the absence of newly-formed fibrin confirms it; the addition of calcium chloride to fibrinogen solution in concentration-dependent manner inhibits effect of chitosan.
Thus, under the action of chitosan, a fibrinogen precipitate forms due to the destabilization of its molecule by the lack of calcium. Absence of fibrin degradation products excludes the possibility of the fibrinolytic system activation and physiological degradation of the clot. It makes no sense to use haemostatic drugs based on chitosan in clinical practice.
Ключевые слова: chitin and its derivates, fibrinogen, haemostasis system.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Ravi Kumar M. N. V. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46 (Issue 1), 1–27. https://doi.org/10.1016/S1381-5148(00)00038-9
2. Dai T., Tanaka M., Huang Y.-Y., Hamblin M. R. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev. Anti Infect. Ther. 2011, 9 (7), 857–879. https://doi.org/10.1586/eri.11.59
3. Chen Z., Yao X., Liu L., Guan J., Liu M., Li Z. et al. Blood coagulation evaluation of N-alkylated chitosan. Carbohydr. Polym. 2017, 173, 259–68. https://doi.org/10.1016/j.carbpol.2017.05.085
4. Hoemann C. D., Marchand C., Rivard G. E., El-Gabalawy H., Poubelle P. E. Effect of chitosan and coagulation factors on the wound repair phenotype of bioengineered blood clots. Int. J. Biol. Macromol. 2017, 104 (Pt B), 1916–1924. https://doi.org/10.1016/j.ijbiomac.2017.04.114
5. Kyzas George Z., Bikiaris Dimitrios N. Recent Modifications of Chitosan for Adsorption Applications: A Critical and Systematic Review. Mar. Drugs. 2015, 13, 312–333. https://doi.org/10.3390/md13010312
6. Feskov A. E., Sokolov A. S., Soloshenko S. V. New hemostatic bandages based on a natural biopolymer chitosan. Meditsina neotlozhnuh sostojanyj. 2017, 2 (81), 164–167. https://doi.org/10.22141/2224-0586.2.81.2017.99698
7. Hattori H., Ishihara M. Changes in blood aggregation with differences in molecular weight and degree of deacetylation of chitosan. Biomed. Mater. 2015, 10, 015014. https://doi.org/10.1088/1748-6041/10/1/015014
8. Pogorielov M., Kalinkevich O., Deineka V., Garbuzova V., Solodovnik A., Kalinkevich A. et al. Haemostatic chitosan coated gauze: in vitro interaction with human blood and in-vivo effectiveness. Biomaterials Research. 2015, 19, 22–32. https://doi.org/10.1186/s40824-015-0044-0
9. Huang Y., Zhang Y., Feng L., He L., Guo R., Xu W. Synthesis of N-alkylated chitosan and its interactions with blood. Artificial cells, nanomedicine, and biotechnology. 2018, 46 (3), 544–50. https://doi.org/10.1080/21691401.2017.1328687
10. Zhang W., Zhong D., Liu Q., Zhang Y., Li N., Wang Q. et al. Effect of chitosan and carboxymethyl chitosan on fibrinogen structure and blood coagulation. J. Biomater. Sci. Polym. Ed. 2013, 24 (13), 1549–1563. https://doi.org/10.1080/09205063.2013.777229
11. Varetska T. V. Microgeterogeneity of fibrinogen. Kryofibrinogen. Ukr. Biochem. Zh. 1960, 32 (2). 13–24.
12. Younes I., Rinaudo M., Harding D., Hitoshi Sashiwa H. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs. 2015, 13 (3), 1133–1174. https://doi.org/10.3390/md13031133
13. Muzzarelli R. A. A., Peter M. G. (Eds.). Chitin Handbook. European Chitin Society. Atec Edizioni, Grottammare, Italy. 1997, 528 p.
14. Ostanina E. S. Tekhnologia pererabotki voskovoj moli, izuchenie pronivotuberkuleznyh svojstv chitozana I vzaimodejstvbia s lipoliticheskimi fermentami Dis. kand. biol. nauk: spec. 03.00.23 «Biotechnologia». Schelkovo. 2007, 142 s.
15. Hu Z., Lu S., Cheng Yu., Kong S., Li S., Li C. et al. Investigation of the Effects of Molecular Parameters on the Hemostatic Properties of Chitosan. Molecules. 2018, 23, 3147–3161. https://doi.org/10.3390/molecules23123147
16. Dolgov V. V., Svirin P. V. Laboratornaja diagnostika narushenij hemostaza. Мoskva-Tver’: ООО «Izdatel’stvo “Triada”». 2005, 227 s.
17. Laemli R. V. Cleavage of structural proteins during of bacteriophage T4. Nature. 1970, 227, 680–685. https://doi.org/10.1038/227680a0
18. Antibodies: a laboratory manual. Ed Harlow, David Lane by Cold Spring Harbor Laboratory. 1988, 726 p.
19. Burnette W. N. «Western blotting»: еlectrophoretic transfer of proteins from SDS polyacrilamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodated protein A. Anal. Biochem. 1981, 112 (2), 195–203. https://doi.org/10.1016/0003-2697(81)90281-5
20. Sonin D. L., Skorik Yu. A., Vasina L. V., Kostina D. A., Malashicheva A. B., Pochkaeva E. I.,Vasyutina M. L., Kostareva A. A., Galagudza M. M. Hemocompatibility of N-carboxyacyl derivatives of chitosan. Translyatsionnaya meditsina = Translational Medicine. 2016, 3 (2), 80–85.
21. Hattori H., Ishihara M. Feasibility of improving platelet-rich plasma therapy by using chitosan with high platelet activation ability. Exper. Ther. Med. 2017, V. 13, P. 1176–1180. https://doi.org/10.3892/etm.2017.4041
22. Zubareva A. A., Shcherbinina T. S., Varlamov V. P., Svirshchevskaya E. V. Intracellular sorting of differently charged chitosan derivatives and chitosan-based nanoparticles. Nanoscale. 2015, 7 (17), 7942–7952. https://doi.org/10.1039/C5NR00327J
23. Hu Z., Zhang D. Y., Lu S. T., Li P. W., Li S. D. Chitosan-Based Composite Materials for Prospective Hemostatic Applications. Mar. Drugs. 2018, 16 (8), 273–295. https://doi.org/10.3390/md16080273
24. Volkov G. L., Platonova T. N., Savchuk A. N., Gornitskaya O. V., Krasnobryzhaya E. N., Chernyshenko T. M. Sovremennie predstavlenia o sisteme gemostaza. Кyiv: Naukova dumka. 2005, 296 s.
25. Skrjabin K. G., Vihoreva G. A., Varlamov V. P. Hitin I hitozan. Poluchenie, svojstva I primenenie. Moskva, Nauka. 2002, 360 s.
26. Majekodunmi S. O. Current Development of Extraction, Characterization and Evaluation of Properties of Chitosan and Its Use in Medicine and Pharmaceutical Industry. American Journal of Polymer Science. 2016, 6 (3), 86–91. https://doi.org/10.5923/j.ajps.20160603.04
27. Kalliola S., Repo E., Srivastava V., Heiskanen J. P., Sirvi? J. A., Liimatainen H., Sillanpaa M. The pH sensitive properties of carboxymethyl chitosan nanoparticles cross-linked with calcium ions. Colloids Surf B Biointerfaces. 2017, 153, 229–236. https://doi.org/10.1016/j.colsurfb.2017.02.025
28. Averett L. E., Akhremitchev B. B., Schoenfisch M. H., Gorkun O. V. Calcium dependence of fibrin nanomechanics: the ?1 calcium mediates the unfolding of fibrinogen induced by force applied to the "A-a" bond. Langmuir. 2010, 26 (18), 14716–14722. https://doi.org/10.1021/la1017664
29. Apryatina K. V., Smirnova L. A., Mochalova A. E., Koryagin A. S. Novel chitosan-based polymer composites for medical and biological applications. Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo. 2014, 1 (2), 206–209.
30. Marx G., Mou X., Hotovely-Salomon A., Levdansky L., Gaberman E., Belenky D.,Gorodetsky R. Heat denaturation of fibrinogen to develop a biomedical matrix. J. Biomed. Mat. Res. 2008, 848 (1), 49–57. https://doi.org/10.1002/jbm.b.30842
31. Klinov D., Barinov N., Dubrovin E. The loss of the tertiary structure of fibrinogen induced by the external factors. FEBS OPEN BIO. 2018, 8, 403.
32. Zubairov D. M. Molekuljarnie mekhanizmi svertuvania krovi i tromboobrazovania. Kazan’: Fen. 2000, 367 s.
33. Dobrovolsky A. B., Titaeva E. V. The Fibrinolysis System: Regulation of Activity and Physiologic Functions of Its Main Components. Biochemistry (Moscow). 2002, 67 (1), 116–127. https://doi.org/10.1023/A:1013960416302