ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 12, No 4, 2019
Р. 19-26, Bibliography 27, English
Universal Decimal Classification: 541.49:546.732/3:547.496.2
https://doi.org/10.15407/biotech12.04.019
GERMANIUM COORDINATION COMPOUNDS FOR INCREASING OF α-L-RHAMOSIDASES ACTIVITY
1 Zabolotny Institute of Microbiology and Virology, of the National Academy of Sciences of Ukraine, Kyiv
2 Mechnikov Odesa National State University, Ukraine
The aim of the work was to determine the influence of a number of coordination compounds of germanium, in particular cation-anionic type, on the activity of α-L-rhamnosidases of three producers: Cryptococcus albidus, Eupenicillium erubescens and Penicillium tardum ІМВ F-100074. Activity of α-L-rhamnosidases was determined according to Davis method, using naringin as substrate. The specific α-L-rhamnosidase activity of preparations was 12 units/mg of protein for C. аlbidus, 120 units/mg for E. еrubescens and 27 units/mg for P. tardum. Protein concentration in preparations was 0.01 mg/ml. Gernanium compounds were synthesized in alcohol-water solution according to standardized methods. In all compounds, the same bis (citrato) germanate anion is realized; however, the composition of the cation changes: the protonated form of phenanthroline and bipyridine or the complex cations of d-metals. It was established that none of the complex compounds exhibited an inhibitory effect on the activity of the enzymes under study. Maximum activating effect was observed with compound tris(bi-pyridine)nickel(II) bis(citrate)germanate monohydrate in concentration of 0.1% on α-L-rhamnosidases of C. albidus (10-fold), E. еrubescens (2.5-fold) and P. tardum (5-fold). Notably, enzymatic activity increased by 45, 47 and 60% respectively in presences of compound bi-pyridine bis(citrate)germanate dihydrate in same concentration. Hence, it was shown that these two compounds can be used as effectors of studied enzymes.
Key words: germanium coordination compounds, Cryptococcus albidus 1001, Eupenicillium erubescens 248, Penicillium tardum ІМВ F-100074 α-L-rhamnosidases.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Trokhymchuk T., Zavelevich M., Liulchuk M., Starosyla D., Rybalko S., Rudenko A. In vitro study of anti-HIV activity of Ptoteflazid herbal composition. Amer. J. Fundam. Appl. Experim. Res. 2017, 4 (7), 87–91.
2. Mueller M., Zartl B., Schleritzko A., Stenzl M., Viernstein H., Unger F. M. Rhamnosidase activity of selected probiotics and their ability to hydrolyse flavonoid rhamnoglucosides. Bioprocess Biosyst. Eng. 2018, 41 (2), 221–228. https://doi.org/10.1007/s00449-017-1860-5
3. Yadav V., Yadav P. K., Yadav S., Yadav K. D. S. Alpha-L-rhamnosidase: a review. Proc. Biochem. 2010, 45 (8), 1226–1235. https://doi.org/10.1016/j.procbio.2010.05.025
4. Puri M. Updates on naringinase: structural and biotechnological aspects. Appl. Microb. and Biotechnol. 2012, 93 (1), 49–60. https://doi.org/10.1007/s00253-011-3679-3
5. Shutka А. О., Kravetz D. S., Seifullina I. I., Martsinko E. E., Pesaroglo A. G. Toxicometric studies of the new antihypoxante OK-5 on the basis of the coordination compound of germanium with bioligands. Toxicol. Med. Prod. 2010, V. 2–3, P. 50–53.
6. Zelenin K. N. Physiologically active complexes of hydrazones. Soros Educat. J. 1996, V. 12, P. 41–46. (In Russian).
7. Zinchenko O. Yu., Shmatkova N. V., Seifullina I. I., Galkin B. N., Fillipova T. O. Antimicrobial activity of isonicotinic acid derivatives and tin (IV) complexes based on them. Microbiology and biotechnology. 2012, V. 2, P. 69–78. https://doi.org/10.18524/2307-4663.2012.2(18).93037 (In Russian).
8. Asia K. Organic germanium. A medical godsend. Tokyo: Kogakusha Ltd. 1977, 154 p.
9. Lukevic E. Y., Gar T. K., Ignatovich L. M., Mironov V. F. Biological activity of germanium compounds. Riga: Zinati. 1990, 191 p. (In Russian).
10. Seifullina I. I., Martsinko E. E., Afanasenko E. V. Design and synthesis of new homo- and heterometal coordination compounds of germanium(IV) for preparation of low toxic drugs with a wide therapeutic action. Odessa National University Herald. Chemistry. 2015, 20 (4), 6–17. https://doi.org/10.18524/2304-0947.2015.4(56).56690
11. Luk’yanchuk V. D., Seifullina I. I., Lіtvinenko D. F., Martsinko E. E. Pharmacological properties of organic and coordination compounds of germanium – modern presentation. Pharmacol. Drug Toxicol. 2016, 1 (47), 3–13. (In Russian).
12. Martsinko E. E., Seifullina I. I. Design and synthesis of molecular complexes and germanium complexones (IV) with a wide spectrum of pharmacological action. Odessa: ONU І. І. Mechnikov. 2018, 144 p. (In Ukrainian).
13. Martsinko E. E., Seifullina I. I., Chebanenko E. A., Pesaroglo A. G., Pozharic'kij O. P. Plant growth promoter iron(II) bis(citrate)germanate(IV). Ukraine. Patent 131091, January 10, 2019. (In Ukrainian).
14. Fedoruk R. S., Khrabko M. І., Tsap M. M., Martsinko E. E. Growth, development and reproductive function of female rats and their offspring viability at the condition of the watering of different doses of citrate germanium. The Animal Biology. 2016, 18 (3), 97–106. https://doi.org/10.15407/animbiol18.03.097.
15. Varbanets L. D., Matselyukh О. V., Nidyalkova N. А., Аvdiyuk Е. V., Gudzenko E. V., Seifullina I. I., Маsаnоvets G. N., Khitrich N. V. The coordination compounds of cobalt (ІІ, ІІІ) with dithiocarbamic acid derivatives – modificators of hydrolytic enzymes activity. Biotechnol. acta. 2013, 6 (1), 73–80. https://doi.org/10.15407/biotech6.01.073(In Ukrainian).
16. Luk’yanchuk V. D., Vіtohіna N. V., Seifullina I. I., Martsinko E. E., Tkachenko V. M., Kravec' D. S. The molecular complex of germanium tetrachloride with nicotinamide, which exhibits antihypoxic activity with thermoprotective properties. Ukraine. Patent 59089, May 10, 2011. (In Ukrainian).
17. Varbanets L. D., Matselyukh О. V., Nidyalkova N. А., Gudzenko O. V., Аvdiyuk Е. V. , Shmatkova N. V., Seifullina I. I. Influence of coordinative compounds of germanium (IV) and stanum (IV) on activity of some microbial enzymes with glycolytical and proteolytical action. Microbiol. Zh. 2014. 74 (6), 11–18. (In Russian).
18. Gudzenko O. V., Borzova N. V., Varbanets L. D. Optimization of cultivation conditions of alpha-L-rhamnosidases producers – representatives of different taxonomic groups of microorganisms. Microbiol. Zh. 2011, 73 (3), 46–53. https://doi.org/10.15407/microbiolj77.04.025 (In Ukrainian).
19. Gudzenko O. V., Varbanets L. D. Optimization of cultivation conditions of penicillium tardum – the ?-l-rhamnosidase producer. Microbiol. Zh. 2015, 77 (4), 25–31. (In Ukrainian).
20. Varbanets L. D., Gudzenko O. V., Borzova N. V. Rhamnosidase from Eupenicillium erubescens: purification and characterization. Nauka i Studia. 2013, 41 (109), 11–23.
21. Borzova N., Gudzenko O., Varbanets L. Purification and characterization of a naringinase from Cryptococcus albidus. Appl. Biochem. Biotechnol. 2018, 184 (3), 953–969. https://doi.org/10.1007/s12010-017-2593-2
22. Gudzenko O. V., Varbanets L. D. Purification and and physico-chemical properties of ?-L-rhamnosidase Penicillium tardum. Microbiol. Zh. 2016, 78 (1), 13–22. (In Ukrainian) https://doi.org/10.15407/microbiolj78.01.013.
23. Davis D. W. Determination of flavonones in citrus juice. Anal. Biochem. 1947, V. 19, P. 476–478 https://doi.org/10.1021/ac60007a016.
24. Seifullina I., Martsinko E., Chebanenko E., Pirozhok O., Dyakonenko V., Shishkina S. Synthesis and structural characteristics of bis(citrate)germanates(IV) (Hbipy)2[Ge(HCit)2]?2H2O and [CuCl(bipy)2]2[Ge(HCit)2]?8H2O. Chemistry Journal of Moldova. General, Industrial and Ecological Chemistry. 2016, 11 (2), 52–57. https://doi.org/10.19261/cjm.2016.11(2).11
25. Seifullina I. I., Martsinko E. E., Chebanenko E. A., Pirozhok O. V., Dyakonenko V. V., Shishkina S. V. Synthesis, Thermal Stability, and Structure of Bis(citrato)germanates: [Co(Phen)3][Ge(HCit)2]?2H2O, [Fe(Phen)3] [Ge(HCit)2]?4H2O (H4Cit = Citric acid, Phen = 1,10-Phenanthroline). Rus. J. Coord. Chem. 2017, 43 (8), 505–511. https://doi.org/10.7868/S0132344X17080060
26. Habala L., Dev?nsky F., Egger A. Metal complexes as urease inhibitors. Journal of Coordination Chemistry. 2018. https://doi.org/10.1080/00958972.2018.1458228
27. Kelly J., Kilpin P., Dyson J. Enzyme inhibition by metal complexes: concepts, strategies and applications Chem. Sci. 2013, V. 4, P. 1410–1419. https://doi.org/10.1039/c3sc22349c