ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 12, No 1, 2019
Р. 66-74, Bibliography 39, English
Universal Decimal Classification: 57.044: 612.35
https://doi.org/10.15407/biotech12.01.066
N. V. Dziubenko, H. M. Kuznietsova, O. V. Lynchak, V. K. Rybalchenko
Taras Shevchenko National University of Kyiv
Aim of the work was to investigate the suspended C60-fulleren effect on liver and pancreas state under intraperitoneal and intragastrial administration on rat experimental cholangitis model. Acute cholangitis was simulated by a single ingestion of α-naphthyl isothiocyanate — ANIT. C60-fullerene aqueous colloid solution (C60FAS, 0.15 mg/ml) was administered to animals at a volume containing C60-fullerenes at a dose of 0.5 mg/kg body weight in 24 and 48 h after ANIT administration. After72 h of the experiment, the animals were euthanized. Blood serum ALT and AST activities were measured, the liver and pancreas states were analyzed by light-microscopy level. It was found that intragastrial and intraperitoneal administration of C60FAS contributes to the correction of negative effects in the liver and pancreas caused by the induction of acute cholangitis. This was proved by the normalization of ALT activity, reduction of pancreatic parenchymal edema and liver fibrosis, and increased blood flow in these organs. Application of C60FAS could improve the state of the liver and pancreas under acute cholangitis in rats.
Key words: C60-fullerene, acute cholangitis.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Shyrokova Ye. N. Primarysclerosingcholangitis: etiology, diagnosis, prognosis and treatment. Clinical perspectives in gastroenterology, hepatology. 2003, V. 1, P. 2–8.
2. GidwaneyN. G., Pawa S., Das K. M. Pathogenesis and clinical spectrum of primarys clerosingcholangitis is. World J. Gastroenterol. 2017, 23 (14), 2459–2469.
3. Skrypnyk I. M. Primarys clerosing cholangitis is: a momentary glance at the problem. “News of medicine and pharmacy” Gastroenterology. 2008, V. 264, P. 3.
4. Prylutska S., Grynyuk I., Matyshevska O., Prylutskyy Yu., Evstigneev M., Scharff P., Ritter U. C60 fullerene as synergistic agent in tumor-inhibitory doxorubicin treatment. Drugs R&D. 2014, 14 (4), 333–340.
5. Prylutskyy Y., Bychko A., Sokolova V., Prylutska S., Evstigneev M., Rybalchenko V., Epple M., Scharff P. Interaction of C60 fullerene complexed to doxorubicin with model bilipid membranes and itsuptake by HeLacells. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, V. 59, P. 398–403.
6. Hendrickson O. D., Morozova O. V., Zherdev A. V., Yaropolov A. I., Klochkov S. G., Bachurin S. O., Dzantiev B. B. Study of distribution and biological effects of fullerene C60 after single and multiple intragastrial al administrations to rats. Fuller Nanotub. Carbon Nanostruct. 2015, 23 (7), 658–668.
7. Didenko G., Prylutska S., Kichmarenko Y., Potebnya G., Prylutskyy Y., Slobodyanik N., Ritter U., Scharff P. Evaluation of the antitumor immune response to C60 fullerene. Mat.-wissu Werkstofftech. 2013, 44 (2–3), 124–128.
8. Johnston H. J., Hutchison G. R., Christensen F. M., Aschberger K., Stone V. The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol. Sci. 2010, V. 114, P. 162–182.
9. Byelinska I. V., Kuznietsova H. M., Dziubenko N. V., Lynchak O. V., Rybalchenko T. V., Prylutskyy Yu. I., Kyzyma O. A., Ivankov O., Rybalchenko V. K., Ritter U. Effect of С60 fullerene on the intensity of colon damage and hematological signs of ulcerative colitis in rats. Mat. Sci. Engin. 2018, V. 93, P. 505–517.
10. Ferreira C. A., Ni D., Rosenkrans Z. T., Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018, https://doi.org/10.1007/s12274-018-2092-y
11. Prylutska S. V., Grynyuk I. I., Matyshevska O. P., Prylutskyy Yu. I., Ritter U., Scharff P. Anti-oxidant properties of C60 fullerene in vitro, fullerene, nanotubes. Carbon Nanostruct. 2008, 16 (5–6), 698–705.
12. Halenova T. I., Vareniuk I. M., Roslova N. M. Hepatoprotective effect of orally applied water-soluble pristine C60 fullerene against CCl4-induced acute liver injury in rats. RSC Adv. 2016, 6 (102), 100046–100055.
13. Kuznietsova G. M., Dziubenko N. V., Chereschuk I. O., Rybalchenko T. V. Influence of water soluble C60 fullerene on the development of acute colitis in rats. Studia biologica. 2017, 11 (1), 41–50.
14. Gharbi N., Pressac M., Hadchouel M., Szwarc H., Wilson S. R., Moussa F. C60 fullereneis a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005, V. 5, P. 2578–2585.
15. Sumner S. C. J., Snyder R. W., Wingard C. Distribution and biomarkers of carbon-14-labeled fullerene C60 ([14C(U)]C60) in female rats and mice for up to 30 days after intravenous exposure. J. Appl. Toxicol. 2015, V. 35, P. 1452–1464.
16. Fickert P., Pollheimer M. J., Beuers U., Lackner C., Hirschfield G., Housset C., Keitel V., Schramm С. Characterization of animal models for primary sclerosing cholangitis (PSC). J. Hepatol. 2014, V. 60, P. 1290–1303.
17. Ritter U., Prylutskyy Yu. I., Evstigneev M. P., Davidenko N. A., Cherepanov V. V., Senenko A. I., Marchenko O. A., Naumovets A. G. Structural features of highlystablere producible C60 fullerenea queouscolloid solution probed by various techniques. Fullerene, Nanotubes, Carbon Nanostruct. 2015, 23 (6). P. 530–534. https://doi.org/10.1080/1536383X.2013.870900
18. Prylutskyy Yu. I., Yashchuk V. M., Kushnir K. M., Golub A. A., Kudrenko V. A., Prylutska S. V. Biophysical studies of fullerene-based composite for bionanotechnology. Mater Sci. Engin. 2003, 23 (1–2), 109–111.
19. Kuklin A. I., Islamov A. Kh., Gordeliy V. I. Two-detector system forsmall-angleneutr on scattering in strument. Neutron News. 2005, V. 16, P. 16–18.
20. Avdeev M. V., Khokhryakov A. A., Tropin T. V., Andrievsky G. V., Klochkov V. K., Derevyanchenko L. I., Rosta L., Garamus V. M., Priezzhev V. B., Korobov M. V., Aksenov V. L. Structural features of molecular-colloidal solutions of C60 fullerene sinwater by small-angleneutron scattering. Langmuir. 2004, V. 20, P. 4363–4368.
21. Lynchak O. V., Prylutskyy Yu. I., Rybalchenko V. K., Kyzyma O. A., Soloviov D., Kostjukov V. V., Evstigneev M. P., Ritter U., Scharff P. Comparative analysis of the antineoplastic activity of C60 fullerene with 5-fluorouracil and pyrrole derivative in vivo. Nanoscale Res. Lett. 2017, 12 (8), 1–6.
22. Kiernan J. Histological and histochemical methods: theory and practice. 4th ed. New York: Cold Spring Harbor Laboratory Press. 2008, 608 p.
23. Sergienko V. I., Bondareva I. B. Mathematical statistics in clinical studies. Moscow: GeoterMedicine. 2006. 304 p.
24. Bell L. N. Serum metabolic signatures of primary biliary cirrhosis and primary sclerosing cholangitis is. Liver Int. 2015, V. 35, P. 263–274.
25. Grattagliano I., Calamita G., Cocco T., Wang D. Q-H., Portincasa P. Pathogenic role of oxidative and nitrosatives tressinprimary biliary cirrhosis. WJG. 2014, 20 (19), 5746–5759.
26. Sorrentino P. Oxidative stress and steatosis are cofactors of liver injury in primary biliary cirrhosis. J. Gastroenterol. 2010, V. 45, P. 1053–1062.
27. Shearn C. T., Orlicky D. J., Petersen D. R. Dysregulation of antioxidant responses in patients diagnosed with concomitant Primary Sclerosing Cholangitis. Exp. Mol. Pathol. 2018, 104 (1), 1–8.
28. Petersen D. R., Orlicky D. J., Roede J. R., Shearn C. T. Aberrant expression of redox regulatory proteins in patients with concomitant primary Sclerosing cholangitis. Exp. Mol. Pathol. 2018, 105 (1), 32–36.
29. Ohta Y., Kongo-Nishimura M., Hayashi T., Kitagawa A., Matsura T., Yamada K. Saikokeishito extract exerts at therapeutic effect on alpha-naphthylisothiocyanate-induced liver injury in rats through attenuation of enhanced neutrophil in filtration and oxidative stress in the liver tissue. J. Clin. Biochem. Nutr. 2007, 40 (1), 31–41.
30. Zhao Y., Zhou G., Wang J., Jia L., Zhang P., Li R., Shan L., Liu B., Song X., Liu S., Xiao X. Paeoniflorin protects against ANIT-induced cholestasis by ameliorating oxidative stress in rats. Food Chem. Toxicol. 2013, V. 58, P. 242–248.
31. Li Y., YuH., XuZ., ShiS., WangD., ShiX., Wang Y., ZengB., DengH., DengX., Zhong X. Melatonin ameliorates ANITinduced cholestasis by activating Nrf2 through a PI3K/Aktdependent pathway in rats. Mol. Med. Rep. 2018. https://doi.org/10.3892/mmr.2018.9746
32. Jani N., Buxbaum J. Autoimmune pancreatitis and cholangitis. World J. Gastrointest. Pharmacol. Ther. 2015, 6 (4), 199–206.
33. Kawa S., Hamano H., Umemura T., Kiyosawa K., Uehara T. Sclerosing cholangitis associated with autoimmune pancreatitis. Hepatol. Res. 2007, 37 (3), S487–495.
34. Eswaran S. V. Water soluble nanocarbon materials: a panacea for all? Curr. Sci. 2018, 114 (9), 1846–1850.
35. Ahsan H., Ali A., Ali R. Oxygen free radicals and systemic autoimmunity. Clin. Exp. Immunol. 2003, 131 (3), 398–404.
36. Takahashi M., Kato H., Doi Y., Hagiwara A., Hirata-Koizumi M., Ono A., Kubota R., Nishimura T., Hirose A. Sub-acute oral toxicity study with fullerene C60 in rats. J. Toxicol. Sci. 2002, 37 (2), 353–361.
37. Zen Y. Thepathology of IgG 4-related disease in the bile duct and pancreas. Semin. Liver. Dis. 2016, 36 (3), 242–256.
38. Pemberton P. W., Aboutwerat A., Smith A., Warnes T. W. Ursodeoxycholic acid in primary biliary cirrhosis improves glutathione status but fails to reduce lipid peroxidation. Redox. Rep. 2006, V. 11, P. 117–123.
39. Shipelin V. A., Gmoshinski I. V., Tutel’yan V. A. Study of the fullerene C60-stability in biological substrates using in vitro model system. Nanotechnologies in Russia. 2013, 8 (11–12), 810–815.