ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 5, 2018
https://doi.org/10.15407/biotech11.05.035
Р. 35-41, Bibliography 20, English
Universal Decimal Classification: 577.15:577.152.3
DEGRADATION OF FLAVONOIDS BY Cryptococcus albidus α-L-RHAMNOSIDASE
N.V. Borzova O. V., Gudzenko, L. D. Varbanets
Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
The aim of the work was to investigate the possibility of practical use substrate specificity of α-Lrhamnosidase Cryptococcus albidus. p-Nitrophenyl derivatives of monosaccharides were used to determine the activity and specificity of the enzyme. The ability to hydrolyze of natural substrates was evaluated by Davis and high-performance liquid chromatography methods. It was shown that the enzyme exhibits narrow specificity towards the glycon of synthetic substrates and hydrolyzes only p-nitrophenyl-α-L-rhamnopyranoside (Km 4.5 mM) and p-nitrophenyl-α-D-glucopyranoside (Km 10.0 mM). C. albidus α-L-rhamnosidase the most active degrades naringin (Km 0.77 mM), releasing prunin and naringenin. Km for neohesperidin was 3.3 mM. The efficacy of the naringin hydrolysis in grapefruit and pomelo juice was 98 and 94% in 60 min (40 оC, 2 U/ml). As the result of treatment by α-L-rhamnosidase of green tea and orange juice, there was a decrease in the content of rutin, narirutin and hesperidin, indicating that the α-1,2- and α-1,6-linked rhamnose can be cleaved from natural flavonoids. Thus, the study shows the efficiency of treating citrus juices and green tea with C. albidus α-L-rhamnosidase for the purpose of improving their taste qualities and obtaining bioavailable flavonoids glucosides.
Key words: specificity of Cryptococcus albidus, α-L-rhamnosidase, specificity naringin, neohesperidin, rutin, flavonoids, citrus juices, green tea.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Ribeiro I. A., Ribeiro M. H. L. Naringing and naringenin determination and control in grapefruit juice by a validated HPLC method. Food Control. 2008, 19 (4), 432–438. https://doi.org/10.1016/j.foodcont.2007.05.007
2. Monti D., Pisvejcova A., Kren V., Lama M., Riva S. Generation of an ?-L-rhamnosidase library and its application for the selective derhamnosylation of natural products. Biotechnol. Bioeng. 2004, 87 (6), 763–771. https://doi.org/10.1002/bit.20187
3. Quideau S., Deffieu D., Douat-Casassus C., Pouysеgu L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Edit. 2011, 50 (3), 586–621. https://doi.org/10.1002/anie.201000044
4. Xiao J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food Sci. Nutr. 2017, 57 (9), 1874–1905. https://doi.org/10.1080/10408398.2015.1032400
5. Walle T. Absorption and metabolism of flavonoids. Free Radic. Biol. Med. 2004, 36 (7), 829–837. https://doi.org/10.1016/j.freeradbiomed.2004.01.002
6. Valentova K., Vrba J., Bancirova M., Ulrichova J., Kren V. Isoquercitrin: pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014, 68, 267–282. https://doi.org/10.1016/j.fct.2014.03.018
7. Slamova K., Kapesova J., Valentova K. “Sweet Flavonoids”: Glycosidase-catalyzed modifications. Int. J. Mol. Sci. 2018, 19 (7), 2126. https://doi.org/10.3390/ijms19072126
8. Weignerova L., Marhol P., Gerstorferova D., Kren V. Preparatory production of quercetin-3-?-D-glucopyranoside using alkali-tolerant thermostable ?-L-rhamnosidase from Aspergillus terreus. Bioresour. Technol. 2012, 115, 222–227. https://doi.org/10.1016/j.biortech.2011.08.029
9. Gonzalez-Barrio R., Trindade L. M., Manzanares P., de Graaff L. H., Tomas-Barberan F. A., Espin J. C. Production of bioavailable flavonoid glucosides in fruit juices and green tea by use of fungal alpha-Lrhamnosidases. J. Agric. Food Chem. 2004, 52 (20), 6136–6142. https://doi.org/10.1021/jf0490807
10. Ni H., Xiao A. F., Cai H. N., Chen F., You Q., Lu Y. Z. Purification and characterization of Aspergillus niger ?-L-rhamnosidase for the biotransformation of naringin to prunin. Afr. J. Microbiol. Res. 2012, 6 (24), 5276–5284. https://doi.org/10.5897/AJMR12.1229
11. Yadav S., Yadava S., Yadav K. D. ?-Lrhamnosidase selective for rutin to isoquercitrin transformation from Penicillium griseoroseum MTCC-9224. Bioorg. Chem. 2017, 70, 222–228. https://doi.org/10.1016/j.bioorg. 2017.01.002
12. Mueller M., Zartl B., Schleritzko A., Stenzl M., Viernstein H., Unger F. M. Rhamnosidase activity of selected probiotics and their ability to hydrolyse flavonoid rhamnoglucosides. Bioproc. Biosyst. Eng. 2018, 41 (2), 221–228. https://doi.org/10.1007/s00449-017-1860-5
13. Amaretti A., Raimondi S., Leonardi A., Quartieri A., Rossi M. Hydrolysis of the rutinose-conjugates flavonoids rutin and hesperidin by the gut microbiota and bifidobacteria. Nutrients. 2015, 7 (4), 2788–2800. https://doi.org/10.3390/nu7042788
14. Zhu Y., Jia H., Xi M., Xu L., Wu S., Li X. Purification and characterization of a naringinase from a newly isolated strain of Bacillus amyloliquefaciens 11568 suitable for the transformation of flavonoids. Food Chem. 2017, 214, 39–46. https://doi.org/10.1016/j.foodchem.2016.06.108
15. Singh P., Sahota P. P., Singh R. K. Evaluation and characterization of new ?-Lrhamnosidase-producing yeast strains. J. Gen. Appl.Microbiol. 2015, 61 (5), 149–156. https://doi.org/10.2323/jgam.61.149
16. Gudzenko O. V., Varbanets L. D. Purification and and physico-chemical properties of ?-Lrhamnosidase Cryptococcus albidus. Microbiol. Zh. 2012, 74 (6), 16–23. (In Russian).
17. Chaplin M. E., Kennedy J. E. Carbohydrate analysis. Oxford: Washington: IRL Press. 1986, 228 p.
18. Davis D. W. Determination of flavonones in citrus juice. Anal. Biochem. 1947, 19, 476–478.
19. Dixon M., Webb E. Enzymes. Мoskva: Mir. 1982, 1, 98–109. (In Russian).
20. Yadav V., Yadav P. K., Yadav S., Yadav K. D. S. Alpha-L-rhamnosidase: a review. Proc. Biochem. 2010, 45 (8), 1226–1235. https://doi.org/10.1016/j.procbio. 2010.05.025