ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 5, 2018
https://doi.org/10.15407/biotech11.05.042
Р. 42-48, Bibliography 22, English
Universal Decimal Classification: 615.919+577.152.34
AMPHIBIAN SKIN SECRETIONS: A POTENTIAL SOURCE OF PROTEOLYTIC ENZYMES
I. Nikolaieva1, Yu. Dudkina1, D. Oliinyk1, O. Oskyrko1, O. Marushchak2, T. Halenova1, O. Savchuk1
1Taras Shevchenko National University of Kyiv, Ukraine
2Schmalhausen Institute of Zoology of the National Academy of Sciences of Ukraine, Kyiv
The aim of the work was to study the protein content and proteolytic activity of the skin glands secretions of 10 the most common types of amphibians on the territory of Ukraine such as B. bombina, B. variegata, B. bufo, B. viridis, R. temporaria, P. ridibundus, P. esculentus, P. fuscus, S. salamandra, as well as the hybrid of B. bombina and B. variegata species. It was shown that the skin secretions of the studied amphibians contained a wide range of proteins with a molecular weight in the range from 8 to 150 kDa. By enzyme electrophoresis using gelatin, fibrinogen and collagen as substrates, it was found that they contained proteinases that differ in substrate specificity. It was revealed that the skin glands secretions of B. bombina, S. salamander species, as well as the hybrid of B. bombina and B. variegata species were characterized by he increased protein content with gelatinase and collagen activity.
Key words: amphibians, skin gland secretions, proteolytic activity.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Gomes A., Giri B. Saha A., Mishra R., Dasgupta S., Debnath A., Gomes A. Bioactive molecules from amphibian skin: Their biological activities with reference to therapeutic potentials for possible drug development. Ind. J. Exp. Biol. 2007, 45, 579–593.
2. Clarke B. T. The natural history of amphibian skin secretions, their normal functioning and potential medicinal applications. Biol. Rev. 1997, 72 (3), 365–379. https://doi.org/10.1111/j.1469-185X.1997.tb00018.x
3. Morishita S., Shoji M., Oguni Y., Ito C., Noguchi K., Sakanashi M. Congestive heart failure model in rabbits: effects of digoxin and a drug containing toad venom. Jpn. J. Pharmacol. 1991, 56 (4), 427–432. https://doi.org/10.1254/jjp.56.427
4. Marenah L., Flatt P. R., Orr D. F., McClean S., Shaw C., Abdel-Wahab Y. H. Skin secretion of the toad Bombina variegata contains multiple insulin-releasing peptides including bombesin and entirely novel insulinotropic structures. Biol. Chem. 2004, 385 (3–4), 315–321. https://doi.org/10.1515/BC.2004.027
5. Shimizu Y., Inoue E., Ito C. Effect of the water-soluble and non-dialyzable fraction isolated from Senso (Chan Su) on lymphocyte proliferation and natural killer activity in C3H mice. Biol. Pharm. Bull. 2004, 27 (2), 256–260. https://doi.org/10.1248/bpb.27.256
6. Barberio C., Delfino G., Mastromei G. A low molecular weight protein with antimicrobial activity in the cutaneous ‘venom’ of the yellowbellied toad (Bombina variegata pachypus). Toxicon. 1987, 25 (8), 899–909. https://doi.org/10.1016/0041-0101(87)90250-9
7. Soravia E., Martini G., Zasloff M. Antimic robial properties of peptides from Xenopus granular gland secretions. FEBS Lett. 1988, 228, 337–342. https://doi.org/10.1016/ 0014-5793(88)80027-9
8. Yasin B., Pang M., Turner J. S., Cho Y., Dinh N. N., Waring A. J., Lehrer R. I., Wagar E. A. Evaluation of the inactivation of infectious Herpes simplex virus by hostdefense peptides, Eur. J. Clin. Microbiol. Infect. Dis. 2000, 19 (3), 187–194. https://doi.org/10.1007/s100960050457
9. Chinchar V. G., Wang J., Murti G., Carey C., Rollins-Smith L. Inactivation of frog virus 3 and channel catfish virus by esculentin-2P and ranatuerin-2P, two antimicrobial peptides isolated from frog skin. Virology. 2001, 288 (2), 351–357. https://doi.org/10.1006/viro.2001.1080.
10. Montecucchi P. C., Gozzini L., Erspamer V., Melchiorri P. The primary structure of tryptophan containing peptides from skin extracts of Phyllomedusa rhodei (tryptophyllins). Int. J. Pept. Protein Res. 1984, 24 (4) 276–281. https://doi.org/10.1111/j.1399-3011.1984.tb02720.x
11. Montecucchi P. C., de Castiglione R., Piani S., Gozzini L., Erspamer V. Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin of Phyllomedusa sauvagei. Int. J. Pept. Protein Res. 1981, 17 (3), 275–283. https://doi.org/10.1111/j.1399-3011.1981.tb01993.x
12. Mecikoglu M., Saygi B., Yildirim Y., Karadag-Saygi E., Ramadan S., Esemenli T. The effect of proteolytic enzyme serratiopeptidase in the treatment of experimental implant-related infection. J. Bone Joint Surg. Am. 2006, 88 (6), 1208–1214. https://doi.org/10.2106/JBJS.E.00007
13. Jianwu Z., McClean S., Thompson A., Yang Z., Shaw C., Rao P., Bjourson A. J. Purification and characterization of novel antimicrobial peptides from the skin secretion of Hylarana guentheri. Peptides. 2006, 27, 3077–3084. https://doi.org/10.1016/j.peptides.2006.08.007
14. Bradford M. M. A rаpid and sensitive method for quantities of utilizing the principle of protein binding. Anal. Biochem. 1976, 7 (72), 248–254.
15. Laemmli K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227 (5259), 680–685. https://doi.org/10.1038/227680a0
16. Ostapchenko L., Savchuk O., Burlova-Vasilieva N. Enzyme electrophoresis method in analysis of active components of haemostasis system. Adv. Biosci. Biotechnol. 2011, 2, 20–26. https://doi.org/10.4236/abb.2011.21004
17. Abhishek D., Hippargi R. V., Amit N. Gandhare Toad skin-secretions: Potent source of pharmacologically and therapeutically significant compounds. Int. J. Pharmacol. 2008, 5 (2), 17–23. https://doi.org/10.5580/18b6
18. van Zoggel H., Hamma-Kourbali Y., Galanth C., Ladram A., Nicolas P., Courty J., Amiche M., Delb? J. Antitumor and angiostatic peptides from frog skin secretions. Amino Acids. 2012, 42 (1), 385–395. https://doi.org/10.1007/s00726-010-0815-9
19. Wilkesman J., Kurz L. Protease analysis by zymography: a review on techniques and patents. Recent Pat. Biotechnol. 2009, 3 (3), 175–184. https://doi.org/10.2174/187220809789389162
20. Joung-Yoon K., Seung-Bae L., Ki Rok K., Suk-Ho C. Isolation and characterization of a 32-kDa fibrinolytic enzyme (FE-32kDa) from Gloydius blomhoffii siniticus venom. J. Pharmacopunct. 2013, 17 (1), 44–50. https://doi.org/10.3831/KPI.2014.17.006
21. Shekhter A. B., Balakireva A. V., Kuznetsova N. V., Vu kolova M. N., Litvitsky P. F., Zamyatnin A. A. Collagenolytic enzymes and their applications in biomedicine. Curr. Med. Chem. 2017, 24, 1–19. https://doi.org/10.2174/0929867324666171006124236
22. Alipour H., Raz A., Zakeri S., Dinparast Djadid N. Therapeutic applications of collagenase (metalloproteases): A review. Asian Pacific J. Trop. Biomed. 2016, 6 (11), 975–981. https://doi.org/10.1016/j.apjtb.2016.07.017