ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 2, 2018
Р. 30-39, Bibliography 20, English
Universal Decimal Classification: 579.74 + 616-097
https://doi.org/10.15407/biotech11.02.030
A. A. Siromolot1,2, O. S. Oliinyk2, D. V. Kolybo1,2
1ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Ukraine
2 Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
The goal of this study was to characterize serum immunoglobulin G (IgG) antibody responses during experimental immunization of laboratory mice by purified recombinant proteins MPT63, MPT83 of M. tuberculosis and artificial fusion protein MPT83-MPT63 and obtain the recombinant single chain variable fragments of antibodies (scFv) against these antigens.
This study demonstrates that the humoral immune response to MPT63, MPT83, MPT83-MPT63 fusion protein and equimolar set of MPT63 and MPT83 was highly different. For each antigen, serum antibody levels were evaluated by a cutoff value based on optical density index. A crucial role of MPT83 for immunogenicity of chimeric protein and/or cocktail of individual antigens under conditions of immunization of laboratory animals.
We obtained also specific scFv antibodies against MPT63 and MPT83. These antibodies can be used for the development of the system for quantitative determination of antigens as well as for their biological properties investigation.
Thereby, based on the results of the immune response and mycobacterial proteins antigenicity we showed highly immunogenicity properties of N-terminal part of MPT83 antigen for enhencement of ELISA sensitivity. We suggest MPT83-MPT63 fusion protein as a potential candidate on the role of antigenic substance for the serological diagnosis of tuberculosis.
Key words: MPT63, MPT83 antigens, immunization, polyclonal antibodies, scFv, diagnostic.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. World Health Organization. Global tuberculosis report 2017. Available at: http:// www.who.int/tb/publications/global_report/ en/. (acsessed, February, 2018).
2. Nema V. Tuberculosis diagnostics: challenges and opportunities. Lung India. 2012, 29 (30), 259–266. https://doi.org/10.4103/0970-2113.99112
3. McNerney R., Cunningham J., Hepple P., Zumla A. New tuberculosis diagnostics and rollout. International Journal of Infectious Diseases. 2015, 32, 81–86. doi: 10.1016/j. ijid.2015.01.012.
4. World Health Organization. Commercial serodiagnostic tests for diagnosis of tuberc ul os is: policy statement. 2011, WHO Library Cataloguing-inPublication Data. Available at http://apps.who.int/ iris/bitstream/10665/44652/1/9789241502054_ eng.pdf.
5. Banerjee S., Gupta S., Shende N., Kumar S., Harinath B. Serodiagnosis of tuberculosis using two ELISA systems. Ind. J. Clin. Biochem. 2003, 18 (2), 48–53. https://doi.org/10.1007/BF02867367
6. Tiwari D., Tiwari R. P., Chandra R., Bisen P. S., Haque S. Efficient ELISA for diagnosis of active tuberculosis employing a cocktail of secretory proteins of Mycobacterium tuberculosis. Folia Biologica. 2014, 60, 10–20.
7. Redchuk T. A., Korotkevich N. V., Kaber niuk A. A., Oliinyk O. S., Labyntsev A. Iu., Romaniuk S. I., Kolibo D. V., Busol V. A., Komisarenko S. V. Statistical analysis of the distribution of the antibody levels to Mycobacterium bovis antigenes for bovine tuberculosis diagnostics. Cytol Genet. 2010, 44 (5), 280–285. https://doi.org/10.3103/S009545271005004X
8. Mu?oz S., Hern?ndez-Pando R., Abraham S. N., Enciso J. A. Mast cell activation by Mycob act erium tuberculosis: mediator release and role of CD48. J. Immunol. 2003, 170 (11), 5590–5596. https://doi.org/10.4049/jimmunol.170.11.5590
9. Wiker H. G. MPB70 and MPB83 — major antigens of Mycobacterium bovis. Scand. J. Immunol. 2009, 69 (6), 492–499. https://doi.org/10.1111/j.1365-3083.2009.02256.x
10. Chambers M. A., Whelan A. O., Spallek R., Singh M., Coddeville B., Guerardel Y., Elass E. Non-acylated Mycobacterium bovis glycoprotein MPB83 binds to TLR1/2 and stimulates production of matrix metalloproteinase 9. Biochem. Biophys. Res. Commun. 2010, 400 (3), 403–408. https://doi.org/10.1016/j.bbrc.2010.08.085
11. Becker K., Haldimann K., Selchow P., Reinau L., Molin M., Sander P. Lipoprot ein glycosylation by protein-Omannosyltransferase (MAB_1122c) contributes to low cell envelope permeability and antibiotic resistance of Mycobacterium abscessus. Front Microbiol. 2017, 8, 1–12. https://doi.org/10.3389/fmicb.2017.02123
12. Wang L., Zuo M., Chen H., Liu S., Wu X., Cui Z., Yang H., Liu H., Ge B. Mycobacterium tuberculosis lipoprotein MPT83 induces apoptosis of infected macrophages by activating the TLR2/p38/COX-2 signaling pathway. J. Immunol. 2017, 198 (12), 4772–4780. https://doi.org/10.4049/jimmunol.1700030
13. Manoilov K. Yu., Labyntsev A. Yu., Korotkevych N. V., Kolibo D. V., Komisarenko S. V. Interaction of recombinant diphtheria toxoids with cellular receptors in vitro. Biotechnol. acta. 2016, 9 (3), 44–51. doi: 0.15407/ biotech9.03.044.
14. Siromolot A. A., Oliinyk O. S., Kolibo D. V. Komisarenko S. V. Mycobacterium tuberculosis antigens MPT63 and MPT83 increase phagocytic activity of murine peritoneal macrophages. The Ukr. Biochem. J. 2016, 88 (5), 62–70. doi: 10.15407/ ubj88.05.062.
15. Sch?gger H., Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987, 166 (2), 368–379. https://doi.org/10.1016/0003-2697(87)90587-2
16. Oliinyk O. S., Palyvoda K. O., Lugovskay a N. E., Kolibo D. V., Lugovskoy E. V., Komisarenko S. V. Recombinant single chain variable fragments antibodies (scFv) against Pro144-Leu155 fragment of human protein C. The Ukr. Biotech. J. 2015, 87 (2), 88–94.
17. Oliinyk O. S., Kaberniuk A. A., Kolibo D. V., Komisarenko S. V. Isolation and characte rization of recombinant single chain variable fragment antibodies (scFv) against human heparin-binding EGF-like growth factor. Biotekhnolohiia. 2012, 5 (6), 47–56. (In Ukrainian).
18. Lyashchenko K. P., Pollock J. M., Colangeli R., Gennaro M. L. Diversity of antigen recognition by serum antibodies in experimental bovine tuberculosis. Infection and Immunity. 1998, 66 (11), 5344–5349.
19. Redchuk T. A., Korotkevich N. V., Kaberniuk A. A., Oliinyk O. S., Labyntsev A. Yu., Romaniuk S. I., Kolibo D. V., Komisarenko S. V. Recombinant chimera protein MPB63MPB83 as perspective antigen for diagnostic of tuberculosis. Biotekhnolohiia. 2010, 3 (5), 50–56. (In Ukrainian).
20. Siromolot A. A., Redchuk T. A., Solodiankin O. S., Kolibo D. V., Gerilovich A. P., Komisarenko S. V. The trial of experimental test system for the specific diagnostics of cattle tuberculosis. Biotechnol. acta. 2016, 9 (4), 14–18. https://doi.org/10.15407/ biotech9.04.014.