ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 2, 2018
https://doi.org/10.15407/biotech11.02.047
Р. 47-56, Bibliography 28, English
Universal Decimal Classification: 577.218+575.22+633.11
POLYMORPHISM OF SOME TRANSCRIPTION FACTOR GENES RELATED TO DROUGHT TOLERANCE IN WHEAT
Lakhneko O. R.1, 2, Stepanenko A. I.1, 3, Kuzminskiy Ye. V.2, Morgun B. V.1, 2
1Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv
2National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
3 School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
The aim of the research was to study polymorphism of preselected gene loci of three transcription factors (TaNAC2a, TaWRKY2, and TaWRKY19) and the Late Embryogenesis Abundant (LEA) proteins dehydrin (Td29b) related to wheat drought tolerance. The genes structure and chromosome location were established via bioinformatics tools. It is stated that TaWRKY2 and TaWRKY19 genes were comprised of 4 exons and 3 introns located on 2BS and 1DS chromosome arms, respectively; TaNAC2a — 2 exons and 1 intron 7AS; Td29b — single exon gene 3AS. Using polymerase chain reaction, no polymorphism was observed. Polymorphic bands were detected for TaWRKY2 locus. The screening of the distribution of the revealed polymorphic loci was carried out for a set of wheat and rye varieties, old landraces and interspecific hybrids. The polymorphism of TaWRKY2 locus indicated the presence of some other possible alleles of the gene. The obtained data are important for further investigations of wheat drought tolerance.
Key words: Triticum spp., polymerase chain reaction, transcription factors, TaNAC2a, TaWRKY2, TaWRKY19, LEA, Td29b, drought tolerance.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Food Outlook: Biannual report on global food markets. November 2017. Available at: http:// www.fao.org/3/a-I8080e.pdf.
2. Kaur V., Singh S., Behl R. K. Heat and drought tolerance in wheat: Integration of physiological and genetic platforms for better performance under stress. Ekin J. 2016, 2 (1), 1–14.
3. Pokhylko S. Yu., Troyanovska A. V., Stepanenko A. I., Urbanovich O. Yu., Dugan O. M., Rybalka О. І., Morhun B. V. Studies of bread wheat genotypes with transferred gene GPC-B1 of Triticum turgidum ssp. dicoccoides. Fact. Exp. Evol. Org. 2016, 18, 132–136. (In Ukrainian).
4. Stepanenko O. V., Stepanenko A. І., Kuzminskiy Ye. V., Morgun B. V. Identification of Psy1 gene alleles responsible for carotenoid accumulation in wheat grains. Biotechnol. acta. 2017, 10 (2), 57–66. https://doi.org/10.15407/ biotech 10.02.057.
5. Lakhneko O. R., Stepanenko A. I., Morgun B. V. Genotyping Triticum aestivum L. cultivars of Ukraine with microsatellite markers. Fact. Exp. Evol. Org. 2016, 19, 61–63.
6. Kosov? K., V?t?mv?s P., Urban M. O., Kholov? J., Pr??il I. T. Breeding for enhanced drought resistance in barley and wheat — drought-assoc iated traits, genetic resources and their potential utilization in breeding programmes. Czech J. Genet. Plant Breed. 2014, 50 (4), 247–261.
7. ElSayed A. I., Rafudeen M. S. Molecular marker assisted for recognition drought tolerant in some of bread wheat genotypes. J. Crop Sci. Biotech. 2012, 15 (1), 17–23. https://doi.org/10.1007/s12892-011-0051-1
8. El-Sayed O. E., Ibrahim H. F. RAPD and ISSR markers related to drought tolerance of regenerated plants in wheat double haploids and varieties. Middle East. Russian J. Plant Sci. Biotechnol. 2008, 2 (2), 44–51.
9. Kim S. H., Kim D. Y., Yacoubi I., Seo Y. W. Phenotypic and genotypic analyses of drought tolerance in Korean and Tunisian wheat cultivars. Plant Breed. Biotech. 2014, 2 (2), 139–150. https://doi.org/10.9787/PBB.2014.2.2.139
10. Sadat S., Saeid K. A., Bihamta M. R., Torabi S., Salekdeh S. G. H., Ayeneh G. A. L. Marker assisted selection for heat tolerance in bread wheat. World Appl. Sci. J. 2013, 21 (8), 1181– 1189. doi: 10.5829/idosi.wasj.2013.21. 8.2866.
11. Rana R. M., Rehman S. U., Ahmed J., Bilal M. A comprehensive overview of recent advances in drought stress tolerance research in wheat (Triticum aestivum L.). Asian J. Agr. Biol. 2013, 1 (1), 29–37.
12. Niu C.-F., Wei W., Zhou Q.-Y., Tian A.-G., Hao Y.-J., Zhang W.-K., Ma B., Lin Q., Zhang Z.-B., Zhang J.-S., Chen S.-Y. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ. 2012, 35, 1156–1170. doi: 10.1111/j.13653040.2012. 02480.x.
13. Okay S., Derelli E., Unver T. Transcriptomewide identification of bread wheat WRKY transcription factors in response to drought stress. Mol. Genet. Genomics. 2014, 289 (5), 765–781. https://doi.org/10.1007/s00438-014-0849-x
14. Zhu X., Liu S., Meng C., Qin L., Kong L., Xia G. WRKY transcription factors in wheat and their induction by biotic and abiotic stress. Plant Mol. Biol. Rep. 2013, 31 (5), 1053–1067. https://doi.org/10.1007/s11105-013-0565-4
15. Pandey S. P., Somssich I. E. The role of WRKY transcription factors in plant immunity. Plant Physiol. 2009, 150 (4), 1648–1655. doi: 10.1104/pp.109. 138990.
16. Tang Y. M., Liu M. Y., Gao S. Q., Zhang Z., Zhao X., Zhao C. P., Zhang F. T., Chen X. P. Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol. Plant. 2012, 144, 210–224. https://doi.org/10.1111/j.1399-3054.2011.01539.x
17. Nakashima K., Yamaguchi-Shinozaki K., Shinozaki K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci. 2014, 5, 1–7. https://doi.org/10.3389/fpls.2014.00170.
18. Xue G. P., Way H. M., Richardson T., Drenth J., Joyce P. A., McIntyre C. L. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol. Plant. 2011, 4 (4), 697–712. https://doi.org/10.1093/mp/ssr013
19. Xia N., Zhang G., Liu X. Y., Cai G. L., Zhang Y., Wang X. J., Zhao J., Huang L. L., Kang Z. S. Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol. Biol. Rep. 2010, 37 (8), 3703–3712. doi: 10.1007/ s11033-010-0023-4.
20. Hassan N. M., El-Bastawisy Z. M., El-Sayed A. K., Ebeed H. T., Alla M. M. N. Roles of dehydrin genes in wheat tolerance to drought stress. J. Advanced Res. 2015, 6, 179–188. https://doi.org/10.1016/j.jare.2013.11.004
21. Min D.-H., Zhang X.-H., Xu Z.-S.; Zhao Y., Chen Y., Li L.-C., Chen M., Ma Y.-Z. Induction kinetics of a novel stress-related LEA gene in wheat. Plant Mol. Biol. Rep. 2012, 30 (6), 1313–1321. https://doi.org/10.1007/s11105-012-0446-2
22. Amara I., Zaidi I., Masmoudi K., Ludevid M., Pag?s M., Goday A., Brini F. Insights into late embryogenesis abundant (LEA) proteins in plants: from structure to the functions. Amer. J. Plant Sci. 2014, 5 (22), 3440–3455. https://doi.org/10.4236/ajps.2014.522360
23. Ali-Benali M. A., Alary R., Joudrier P., Gautier M.-F. Comparative expression of five Lea Genes during wheat seed development and in response to abiotic stresses by real-time quantitative RT-PCR. Biochim. Biophys. Acta. 2005, 1730, 56–65. doi: 10.1016/j. bbaexp.2005.05.011.
24. Hu B., Jin J., Guo A.-Y., Zhang H., Luo J., Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015, 31 (8), 1296–1297. doi: 10.1093/ bioinformatics/btu817.
25. Murray M., Thompson W. Rapid isolation of high molecular weight plant DNA. Nucl. Acids Res. 1980, 8 (19), 4321–4325.
26. Singhal H., Ren Y. R., Kern S. E. Improved DNA electrophoresis in conditions favoring polyborates and Lewis acid complexation. PLoS One. 2010, 5 (6), 1–6. doi: 10.1371/ journal.pone.0011318.
27. Akinina G. E., Dugar V. N. Popov V. N. Statistical analysis of genetic data using software ARLEQUIN, PHILYP, CLANN, STRUCTURE. Kharkіv: The Рlant Production Institute named by V. Ya. Yuryev, NAAS. 2014, 100 p. (In Russian).
28. International Wheat Genome Sequencing Consortium (IWGSC). A chromosomebased draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014, 345 (6194), 1251788. doi: 10.1126/ science.1251788.