ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 2, 2018
https://doi.org/10.15407/biotech11.02.072
Р. 72-78, Bibliography 23, English
Universal Decimal Classification: 57.017.22
L. N. Churkina 1, V. V. Klochko 1, S. .D Zagorodnya 1, L. V. Yaroshenko 1, O. B. Luitko 2
1Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
2Institute of Orthopedics and Traumatology of the National Academy of Medical Sciences of Ukraine, Kyiv
The aim of the work was the research of antibiotic batumin action on the biofilm formed by staphylococci and on the process of the biofilm formation by strain-producer Pseudomonas batumici. The minimal inhibiting concentration (MIC) of batumin was studied according to The Clinical and Laboratory Standards Institute standards — CLSI. Biofilm formation was studied using photometric O’Toole method with flatbed photometer at wavelength 540 nm. The batumin penetrated into biofilms of staphylococci and reduced the biomass of the formed biofilm of Staphylococcus aureus and S. epidermidis at the antibiotic concentration of 0.5 ?g/ml, which was only twice higher than MIC of batumin for planktonic cells. The degree of biofilm changes in the presence of batumin differed for different staphylococcus strains. However, these differences did not depend on strains sensitivity or their resistance to the antibiotic.
The ability of batumin strain-producer to form the biofilm and the ability of antibiotic to stimulate this process in concentrations of 1 and 10 ?g/ml was established for the first time. In addition, it was found that in the Pseudomonas batumici B-321 planktonic culture in the presence of 10 ?g/ml of batumin, the increase in length of producer cells on average by 15% was noted.
The obtained data shed the light on batumin antimicrobic action on the staphylococci biofilm. It can be argued that is a perspective for treatment of staphylococcal infections. It enabled to consider batumin as a promising drug for the staphylococcal infections treatment.
Key words: batumin, staphylococci, biofilm.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Kiprianova E. A., Klochko V. V., Zelena L. B., Churkina L. N., Avdeeva L. V. Pseudomonas batumici sp. nov., the antibiotic-producing bacteria isolated from soil of the Caucasus Black Sea coast. Microbiol. zh. 2011, 73 (5), 3–8.
2. Klochko V. V., Kiprianovа E. A., Churkina L. N., Avdeeva L. V. Antimicrobial spectrum of atibiotic batumin. Microbiol. zh. 2008, 70 (5), 41–46. (In Russian).
3. Churkina L. N., Kiprianova E. A., Bidnenko S. I., Marchenko K. P., Artysyuk E. I. Antibiotic batumin for diagnostics of staphylococci and treatment of Staphylococcus aureus nasal carriage. Likarska Sprava. 2009, 1–2, 61–67. (In Russian).
4. Ernest E. P., Machi A. S., Karolcik B. A., LaSala P. R., Dietz M. J. Topical adjuvants incompletely remove adherent Staphylococcus aureus from implant materials. J. Orthop. Res. 2017, 15, 1–6. https://doi.org/10.1002/jor.23804
5. Ha K. R., Psaltis A. J., Butcher A. R., Wormald P. J., Tan L. W. In vitro activity of mupirocin on clinical isolates of Staphylococcus aureus and its potential implications in chronic rhinosinusitis. Laryngoscope. 2008, 118, 535–540. https://doi.org/10.1097/MLG.0b013e31815bf2e3
6. Churkina L. N., Vaneechoutte M., Kiprianova E. A., Perunova N. B., Avdeeva L. V., Bukharin O. V. Batumin - a selective inhibitor of staphylococci - reduces biofilm formation in methicillin resistant Staphylococcus aureus. Open J. Med. Microbiol. 2015, 6, 51–59. https://doi.org/10.4236/ojmm.2015.54024
7. Bukharin O. V., Perunova N. B., Ivanova E. V., Churkina L. N., Avdeeva L. V., Yaroshenko L. V. Morpho-functional changes of Staphylococcus aureus biofilms under the effect batumin. J. Microbiol. Epidemiol. Immunobiol. 2013, 2, 8–12. (In Russian).
8. Nikolaev Yu. A., Plakunov V. K. Biofilm - “City of Microbes” or an Analogue of Multicellular Organisms? Microbiologia. 2007, 76 (2), 149–163. (In Russian).
9. Boubaker I., Abbes I., Abdallah B., Mamlouk H., Mahjoubi F., Kammoun A., Hammami Redjeb S. Evaluation of a cefoxitin disk diffusion test for the routine detection of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 2004, 10, 762–765. doi: 10.1111/j.14690691.2004.00919.x.
10. Klochko V. V. Biosynthesis and properties of antibiotic batumin. Biotechnol. acta. 2014, 7 (6), 46–50. https://doi.org/10.15407/biotech7.06.046
11. Wikler M. A., Cockeril F. R., Craig W. A. Performance standards for antimicrobial susceptibility testing; Fifteenths informational supplement. Clin. Labor. Stand. Institute. 2005, 25 (1), 87–151.
12. O’Toole G., Kaplan H., Kolter R. Biofilm formation as microbial development. Ann. Rev. Microbiol. 2000, 54, 49–79. https://doi.org/10.1146/annurev.micro.54.1.49.
13. El Aila N. A., Al Laham N. A., Ayesh B. M. Nasal carriage of methicillin resistant Staphylococcus aureus among health care workers at Al Shifa hospital in Gaza Strip. BMC Infect Dis. 2017, 17 (1), 28. https://doi.org/10.1186/s12879-016-2139-1
14. Churkina L. N., Bidnenko S. I., Lutko O. B., Avdeeva L. V., Babenko L. A. Study of the efficiency of antistaphylococcal antibiotic batumin against methicillin resistant strains of staphylococci. Antibiot. Chemother. 2007, 52 (9–10), 19–23. (In Russian).
15. Tetz G. V., Artemenko N. K., Tetz V. V. Effect of DNase and antibiotics on biofilm characteristics. Antimicrob. Agents Chemother. 2009, 53 (3), 1204–1209. https://doi.org/10.1128/AAC.00471-08
16. Moreno G., Trampuz A., Di Luca M. Synergistic antibiotic activity against planktonic and biofilmembedded Streptococcus agalactiae, Streptococcus pyogenes and Streptococcus oralis. J. Antimicrob. Chemother. 2017, 72 (11), 3085–3092. https://doi.org/10.1093/jac/dkx265
17. Allison K. R., Brynildsen M. P., Collins J. J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature. 2011, 473 (7346), 216–220. doi: 10.1038/ nature10069.
18. Churkina L. N., Bidnenko S. I., Avdeeva L. V., Vaneechoutte M., Makushenko A. S., Lutko O. B., Oserjanskaja N. M. Characteristics of atypical forms of staphylococci (SCVs), isolated from patients with osteomielitis. Antibiot. Chemother. 2011, 55 (5–6), 36–40. (In Russian).
19. Tetz V. V., Korobov V. P., Artemenko N. K., Lenikina L. M., Panjkova N. V., Tetz G. V. Extracellular phospholipids of isolated bacterial communities. Biofilms. 2004, 1, 149–155.
20. Lee V. E., O’Neill A. J. Batumin does not exert its antistaphylococcal effect through inhibition of aminoacyl-tRNA synthetaseInt enzymes. J. Antimicrob. Agents. 2016, 49 (1), 121–122.
21. Steinberger R., Allen A., Hansa H., Holden P. Elongation correlates with nutrient deprivation in Pseudomonas aeruginosa – unsaturates biofilms. Microb. Ecol. 2002, 43 (4), 416–423.
22. Chincholkar S., Thomashow L. Microbial Phenazines: Biosynthesis, Agriculture and Health. Springer-Verlag Berlin: Heidelberg. 2013, 248 р.
23. Maddula V., Pierson E., Pierson L. Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30-84: effects on biofilm formation and pathogen inhibition. J. Bacteriol. 2008, 190. 2759– 2766. https://doi.org/10.1128/JB.01587-07