ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 1, 2018
Р. 25-38, Bibliography 60, English
Universal Decimal Classification: 57.083.3 + 616-71 + 543.9
https://doi.org/10.15407/biotech11.01.025
SPECIFICITY OF MANIFACTURING PROCESS VALIDATION FOR DIAGNOSTIC SEROLOGICAL DEVICES
O. Yu. Galkin 1, 2, A. G. Komar 3, M. O. Pys’menna 1
1 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine
2 Private Limited Company “Profarma Plant”, Ukraine
3 State Company “Ukrainian medical certification center” of the Ministry of Health of Ukraine
The aim of this research was to analyze recent scientific literature, as well as national and international legislature on manifacturing process validation of biopharmaceutical production, in particular devices for serological diagnostics. Technology validation in the field of medical devices for serological diagnostics is most influenced by the Technical Regulation for Medical Devices for in vitro Diagnostics State Standards of Ukraine – SSU EN ISO 13485:2015 “Medical devices. Quality management system. Requirements for regulation”, SSU EN ISO 14971:2015 “Medical devices. Instructions for risk management”, Instruction ST-N of the Ministry of Healthcare of Ukraine 42-4.0:2014 “Medications. Suitable industrial practice”, State Pharmacopoeia of Ukraine and Instruction ICH Q9 on risk management. Current recommendations for validations of drugs manufacturing process, including biotechnological manufacturing, can not be directly applied to medical devices for in vitro diagnostics. It was shown that the specifics of application and raw materials require individual validation parameters and process validations for serological diagnostics devices. Critical parameters to consider in validation plans were provided for every typical stage of production of in vitro diagnostics devices on the example of immunoassay kits, such as obtaining protein antigens, including recombinant ones, preparations of mono- and polyclonal antibodies, immunoenzyme conjugates and immunosorbents, chemical reagents etc. The bottlenecks of technologies for in vitro diagnostics devices were analyzed from the bioethical and biosafety points of view.
Key words: in vitro diagnostics, serological methods, validation, risks, quality management.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Galkin O. Yu., Shyrobokov V. P., Grygoren ko A. A., Dugan O. M., Lustenko T. M., Komar A. G. Biotechnological bases of development of means of serological diagnostics of infectious and non-infectious diseases. Editor Shyrobokov V. P. Kyiv: NTUU “KPI”, 2015, 204 p. (In Ukrainian).
2. Galkin O. Yu., Komar A. G., Grygorenko A. A. Bioanalytical standardizing for serological diagnostic medical devices. Biotechnol. acta. 2015, 8 (2), 112–119. (In Ukrainian). https://doi.org/10.15407/biotech8.02.112
3. Jozala A. F., Geraldes D. C., Tundisi L. L., Feitosa V. A., Breyer C. A., Cardoso S. L., Mazzola P. G., Oliveira-Nascimento L., Rangel-Yagui C. O., Magalhaes P. O., Oliveira M. A., Pessoa A. Biopharmaceuticals from microorganisms: from production to purification. Brazilian J. Microbiol. 2016, 47 (1), 51–63. doi: 10.1016/j. bjm.2016.10.007.
4. Lutsenko T. N., Kovalenko M. V., Galkin O. Yu. Validation of biological activity testing procedure of recombinant human interleukin-7. Ukr. Biochem. J. 2017, 89 (1), Р. 82–89. https://doi.org/10.15407/ubj89.01.082
5. Scicluna M. T., Autorino G. L., Nogarol C., Ricci I., Frontoso R., Rosone F., Nardini R. Validation of an indirect ELISA employing a chimeric recombinant gag and env peptide for the serological diagnosis of equine infectious anemia. J. Virol. Methods. 2018, V. 251, P. 111–117. https://doi.org/10.1016/j.jviromet.2017.10.002
6. Chatterjee S., Vashishta L., Waichale V.S., Nayak V.G., Melarkode R., Donnelly C.M., Vallano P.T., Chirmule N., Sengupta N. Development and validation of a cell based assay for the detection of neutralizing antibodies against recombinant insulins. J. Immunol. Methods. 2018, V. 452, P. 53–62. https://doi.org/10.1016/j.jim.2017.09.004
7. Shestopal O. A., Pidpruzhnykov Yu. V. Development of approaches to the validation of the technological process of production of medicinal products. Upravlinnya, ekonomika ta zabezpechennia yakosti farmacii. 2008, 1 (2), 20–25. (In Ukrainian).
8. Huber L. Chapter 15. Validation of Analytical Methods and Processes. In: Pharmaceutical Process Validation: Second Edition, Revised and Expanded. Editors: R. A. Nash, A. H. Wachter, 3rd ed. New York: Marcel Dekker, 2003, P. 542–559.
9. Tekhnichnii rehlament shchodo medychnykhvyrobiv dlya diahnostyky in vitro (approved by the Cabinet of Ministers of Ukraine of 10.21.2013, N. 754). Ofitsiinyi visnyk Ukrainy. 2013, V. 82, P. 3047. (In Ukrainian).
10. Nikolayenko I. V., Shynkarenko L. M., Galkin O. Yu., Spivak M. Ya. Principles, features and application of hybridoma technology. Imunol. ta alerhol. 2003, V. 4, P. 7–17. (In Ukrainian).
11. Galkin O. Yu. Approaches to the synthesis of conjugates for enzyme immunoassay test-systems and evaluation of their use for diagnostics of infectious diseases. Ukrainskyi zhurnal klinichnoi ta laboratornoi medytsyny. 2010, 5(4), P. 54–60.
12. Egorov A. M., Osipov A. P., Dzantiev B. B., Gavrilova E. M. Theory and practice of enzyme immunoassay. Moskva: Vysshaya shkola, 1991. 288 p. (In Russian).
13. Directive 98/79/EC of the European parliament and of the Council of 27 October 1998 on in vitro diagnostic medical devices. Official Journal of the European Communities. 1998, L. 331 (41), 1.
14. I Medical devices. Quality management systems. Requirements for regulatory purposes. Kyiv: SE UkrNDNC. 2015, 87 p.
15. DSTU ISO/IEC 17025:2017. General requirements for the competence of testing and calibration laboratories. Kyiv: SE UkrNDNC, 2017. (In English).
16. DSTU EN ISO 14971:2015. Medical devices – Application of risk management to medical devices. Kyiv: SE UkrNDNC. 2015, 104 p. (In English).
17. Nastanova ST-N MOZU 42-4.0:2014. Medicines. Good Manufacturing Practice (approved by the order of the Ministry of Health of Ukraine of 07.16.2014, N. 497). Kyiv: Ministry of Health of Ukraine. 2014, 321 p. (In Ukrainian).
18. State Pharmacopoeia of Ukraine. First edition Supplement 2. Ed. O. I. Grizodub. Kharkiv: SE Farmakopeinyj Center. 2015, T. 1. (In Ukrainian).
19. Currie L. A. Detection and quantification limits: origins and historical overview. Analytica Chimica Acta. 1999, 391 (2), 127–134.
20. Thompson M. Ellison S. L. R., Wood R. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure and Applied Chemistry. 2002, 74 (5), 835–855.
21. Galkin O. Yu., Besarab A. B., Lutsenko T. N. Characteristics of enzyme-linked immunosorbent assay for detection of IgG antibodies specific to Сhlamydia trachomatis heat shock protein (HSP-60). Ukr. Biochem. J. 2017, 89 (1), 22–30. https://doi.org/10.15407/ubj89.01.022
22. Galkin A. Yu., Dugan A. M. Elaboration of immunoenzymatic test-kit for total human IgE assay and investigation of its analytical properties. Int. J. Immunol. 2013, 1 (1), 1–6. https://doi.org/10.11648/j.iji.20130101.11
23. Nastanova 42-01-2003. Likarski zasoby.Texnolohichnyi proces. Dokumentaciia (approved by the Ministry of Health of Ukraine of 13.03.2003, N. 107). Kyiv: Ministry of Health of Ukraine. 2003, 48 p. (In Ukrainian).
24. ICH Guideline Q9 on Quality Risk Management. EMA/CHMP/ICH/24235/2006. European Medicines Agency (Sept. 2015).
25. Nishihata T. In: Pharmaceutical Process Validation: Second Edition, Revised and Expanded. Editors: Nash R. A., Wachter A. H. Chapter 6. Validation for Medical Devices, 3rd ed. 2003. P. 230–251.
26. Fetterolf D. M. Developing a sound process validation strategy. Int. Biopharm. 2007, 20 (12), 1–6.
27. U. S. FDA. Points to Consider in the Manufacture and Testing of Monoclonal Antibody Products for Human Use. Rockville, MD (Feb. 1997).
28. Sofer G. Chapter 7. Validation of Biotechnology Processes. In: Pharmaceutical Process Validation: Second Edition, Revised and Expanded. Editors: R. A. Nash, A. H. Wachter, 3rd ed. New York: Marcel Dekker, 2003. P. 252–274.
29. Burman S., Venkat K. Role of analytical testing in biopharmaceutical analysis. In: Biopharmaceutical Process Validation. Editors: G. Sofer, D.W. Zabriskie, 2nd ed. New York: Marcel Dekker, 2000.
30. Lutsenko T. N., Galkin A. Yu. Substantiation of biotechnological approaches for the production of human recombinant interleukin-7. Trudy Belorusskogo gosudarstvennogo tekhnolgicheskogo universiteta. Seriya “Himiya, tehnologiya organicheskikh veschestv i biotehnologiya”. 2015, 4 (177), 188–197. (In Russian).
31. Galkin O. Yu., Besarab O. B., Gryshyna A. S., Dugan O. M., Gurzhenko Yu. M. Biotechnology for obtaining the recombinant heat shock protein (HSP-60) of Chlamydia trachomatis and evaluation of the perspectives of its use in serological diagnostics. Naukovyi visnyk Chernivetszkoho universytetu. Biolohiia (Biolohichni systemy). 2014, 2, 19–29. (In Ukrainian).
32. Galkin O. Yu. Comparative characteristic of experimental methods of epitope mapping of antigens of protein nature. Ukr. Biochem. J. 2014, 86 (4), 164–177. (In Ukrainian).
33. Danilova V. V., Dehtyarenko N. V., Gorshunov Yu. V., Galkin O. Yu. Biosafety in the context of occupational safety. Biotechnological and regulatory aspects. Naukovi visti NTUU “KPI”. 2016, 3, 20–29. (In Ukrainian) https://doi.org/10.20535/1810-0546.2016.3.71114
34. DSTU EN 12469:2017 Biotexnologiya. Shafy mikrobiologichnoyi bezpeky. Ekspluatacijni xarakterystyky (EN 12469:2000, IDT). Kyiv: Derzhspozhyvstandart Ukrainy. 2017, 50 p. (In Ukrainian).
35. Lutsenko T. M., Galkin O. Yu., Karpenko O. Ya., Dugan O. M. Substantiation of parameters of standardization of preparations on the basis of recombinant human interleukin-7. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”. Seriia “Himiia, tekhnolohiia rechovyn ta yikh zastosuvannia”. 2015, 812, 175–183. (In Ukrainian).
36. Motronenko V. V., Lutsenko Т. М., Ruzhynska L. I., Gorshunov Yu. V., Galkin O. Yu. Comparative analysis of the effects of hydrodynamic conditions in submerged culturing of recombinant bacteria. Trudy Belorusskogo gosudarstvennogo tekhnologicheskogo universiteta. Seriya “Khimicheskie tekhnologii, biotekhnologii, geoekologiia”. 2017, 2 (199), 241–246.
37. Gerasimenko V. A., Pogrebnoy Yu. N., Karlash Yu. V. Optimization of the process of designing biotechnological productions by developing CAD elements. Scientific community of students of the XXI century: Abstracts of the II Student International Correspondence Scientific and Practical Conference. Novosibirsk, Russia, 16 April 2012.
38. Galkin O. Yu., Grygorenko A. A. Bioethics in Ukraine: from theory to practice. Normativelegal and educational-scientific aspects. Naukovi visti NTUU “KPI”. 2011, V. 3, P. 12–19. (In Ukrainian).
39. Garcia M?nzer D. G., Ivarsson M., Usaku C., Habicher T., Soos M., Morbidelli M., Pistikopoulos E. N., Mantalaris A. An unstructured model of metabolic and temperature dependent cell cycle arrest in hybridoma batch and fed-batch cultures. Biochem. Eng. J. 2015, 93 (0), 260–273 https://doi.org/10.1016/j.bej.2014.10.013
40. Ben Yahia B., Malphettes L., Heinzle E. Macroscopic modeling of mammalian cell growth and metabolism. Applied Microbiol. Biotechnol. 2015, 99 (17), 7009–7024. https://doi.org/10.1007/s00253-015-6743-6