ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 11, No 1, 2018
Р. 39-57, Bibliography 164, English
Universal Decimal Classification: 004:591.5:612:616-006
https://doi.org/10.15407/biotech11.01.039
SOME TRENDS IN MATHEMATICAL MODELING FOR BIOTECHNOLOGY
O. M. Klyuchko 1, YU. M. Onopchuk 2
1 Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv,
2 Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv
The purpose of present research is to demonstrate some trends of development of modeling methods for biotechnology according to contemporary achievements in science and technique. At the beginning the general approaches are outlined, some types of classifications of modeling methods are observed. The role of mathematic methods modeling for biotechnology in present ?poque of information computer technologies intensive development is studied and appropriate scheme of interrelation of all these spheres is proposed. Further case studies are suggested: some mathematic models in three different spaces (1D, 2D, 3D models) are described for processes in living objects of different levels of hierarchic organization. In course of this the main attention was paid to some processes modeling in neurons as well as in their aggregates of different forms, including glioma cell masses (1D, 2D, 3D brain processes models). Starting from the models that have only theoretical importance for today, we describe at the end a model which application may be important for the practice. The work was done after the analysis of approximately 250 current publications in fields of biotechnology, including the authors’ original works.
Key words: biotechnology, modeling, mathematical methods.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Klyuchko O. M. Information and computer technologies in biology and medicine. Kyiv: NAU-druk. 2008, 252 p. (In Ukrainian).
2. Klyuchko O. М. On the mathematical methods in biology and medicine. Biotechnol. acta. 2017, 10 (3), 31–40. https://doi.org/10.15407/biotech10.03.031
3. Klyuchko O. М. Application of artificial neural networks method in biotechnology. Biotechnol. acta. 2017, 10 (4), 5–13. https://doi.org/10.15407/biotech10.04.005
4. Klyuchko O. М. Cluster analysis in biotechnology. Biotechnol. acta. 2017, 10 (5), 5–18. https://doi. org/10.15407/biotech10.05.005.
5. Klyuchko O. М. Technologies of brain images processing. Biotechnol. acta. 2017, 10 (6), 5–17. https://doi.org/10.15407/biotech10.05.005
6. Tasseff R. A. Mathematical Models in Biotechnology. PLoS One. 2010, 5, e8864.
7. Mata-Alvarez J. Mathematical Modeling in Biotechnology. Biotechnology. V. II. 2004. https://www.eolss.net/sample-chapters/C17/E6-58-02-04.pdf.
8. Gordeev L. S. Mathematical Modeling in Chemical Engineering and Biotechnology. Theoretical Foundations of Chemical Engineering. 2014, 48 (3), 225–229. https://link.springer.com/article/10.1134/S0040579514030099.
9. Piatigorsky B. Ya. Automatic electrophysiological experiment. Kyiv: Nauk. Dumka. 1985, 216 p. (In Russian).
10. Malinovsky B. N. The History of Computing Technique in Persons. Kyiv: KIT. 1995, 384 p. (In Russian).
11. Rana B. K., Insel P. A. G-protein-coupled receptor websites. Trend. Pharmacol. Sci. 2002, 23 (11), 535–536. https://doi.org/10.1016/S0165-6147(02)02113-2
12. Patent 1370136 USSR, МКИ С12N 5/00. The method for dissociation of hippocampal cells. Klyuchko E. М., Tzyndrenko A. Ya. Priority: 31.01.1986; Issued: 30.01.1988, Bull. No 4, 3 p.
13. Sigworth F. Single channel registration. Moskva: Mir. 1987, 448 p. (In Russian).
14. Kostyuk P. G. Mechanisms of electrical excitability of nerve cells. Moskva: Nauka. 1981, 208 p. (In Russian).
15. Klyuchko O. M., Pashkivsky A. O., Sheremet D. Y. Computer modeling of some nanoelements for radio and television systems. Electronics and control system. 2012. 3 (33), 102–107. (In Ukrainian).
16. Klyuchko O. M., Hayrutdinov R. R. Modeling of electrical signals propagation in neurons and its nanostructures. Electronics and control system. 2011, 2 (28), 120–124. (In Ukrainian).
17. Trinus K. F., Klyuchko O. M. Mediators influence on motoneurons retrogradly marked by primulin. Physiological Journal. 1984. 30 (6), 730–733 (In Russian).
18. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Algorithmic and program support for optimization of interval hypoxic training modes selection of pilots. Electro nics and Control Systems. 2017, 2 (52), 85–93.
19. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Mathematic and program models for investigation of reliability of operator professional activity in “Human-Machine” systems. Electronics and Control Systems. 2017, 1 (51), 105–113.
20. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Mathematical model for research of organism restoring for operators of continuously interacted systems. Electronics and Control Systems. 2016, 3 (49), 100–105.
21. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Investigation of reliability of operators work at fluctuating temperature conditions. Electronics and Control Systems. 2016, 2 (48), 132–139.
22. Plakhotnij S. A., Klyuchko O. M., Krotinova M. V. Information support for automatic industrial environment monitoring systems. Electro nics and Control Systems. 2016, 1 (47), 19–34.
23. Onopchuk Yu. M ., Aralova N. I., Klyuchko O. M., Beloshitsky P. V. Mathematic models and integral estimation of organism systems reliability in extreme conditions. Electronics and Control Systems. 2015, 4 (46), 109–115.
24. Onopchuk Yu. M ., Aralova N. I., Klyuchko O. M., Beloshitsky P. V. Integral estimations of human reliability and working capacity in sports wrestling. Journal of the Engineering Academy. 2015, 3, P. 145–148 (In Russian).
25. Klyuchko O. M., Shutko V. N., Navrots kyi D. O., Mikolushko A. M. The set of program models for ecological monitoring technical system based on principles of biophysics. Electronics and Control Systems. 2014, 4 (42), 135–142.
26. Klyuchko O. M., Sheremet D. Yu. Computer simulation of biological nanogenerator functions. Electronics and Control Systems. 2014, 2 (40), 103–111.
27. Klyuchko O. M., Shutko V. N. Computer modeling of auto-oscillating phenomena in neuron complexes. Electronics and Control Systems. 2014, 1 (39), 127–132.
28. Klyuchko O. M., Sheremet D. Yu. Computer modeling of biologic voltage-activated nanostructures. Electronics and Control Systems. 2014, 1 (39), 133–139.
29. BeloshitskyP. V., KlyuchkoO. M., OnopchukYu. M. Radiation damage of organism and its correction in conditions of adaptation to highmountain meteorological factors. Bulletin of NAU. 2010, V. 1, P. 224–231 (In Ukrainian).
30. Beloshitsky P. V., Klyuchko O .M., Onopchuk Yu., Makarenko M. V. Estimation of psycho-physiological functions of a person and operator work in extreme conditions. Bulletin of NAU. 2009, N 3, P. 96–104 (In Ukrainian).
31. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu., Kolchinska A. Z. Results of research of higher nervous activity problems by Ukrainian scientists in Prielbrussie. Bulletin of NAU. 2009, Nо 2, P. 105–112 (In Ukrainian).
32. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of structural and functional interdependencies by Ukrainian scientists in Prielbrussie. Bulletin of NAU. 2009, Nо 1, P. 61–67 (In Ukrainian).
33. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of highlands factors influence on health and longevity by Ukrainian scientists in Prielbrussie. Bulletin of NAU. 2008, Nо 4, P. 108–117 (In Ukrainian).
34. Onopchuk Yu. M., Klyuchko O. M., Beloshitsky P. V. Development of mathematical models basing on researches of Ukrainian scientists at Elbrus. Bulletin of NAU. 2008, Nо 3, P. 146–155 (In Ukrainian).
35. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of adaptation problems by Ukrainian scientists in Prielbrussie. Bulletin of NAU. 2008, No 1, P. 102–108 (In Ukrainian).
36. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of hypoxia problems by Ukrainian scientists in Elbrus region. Bulletin of NAU. 2007, No 3–4, P. 44–50 (In Ukrainian).
37. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of medical and biological research of Ukrainian scientists at Elbrus. Bulletin of NAU. 2007, No 2, P. 10–16 (In Ukrainian).
38. Belan P. V., Gerasimenko O. V., Tepikin A. V., Petersen O. H. Localization of Ca++ extrusion sites in pancreatic acinar cells. Journal of Biological Chemistry. 1996, V. 271, P. 7615–7619.
39. Belan P. Extracellular Ca++ spikes due to secretory events in salivary gland cells. Journal of Biological Chemistry. 1998, V. 273, P. 4106–4111.
40. Jabs R., Pivneva T., Huttmann K. Synaptic transmission onto hyppocampal glial cells with hGFAP promoter activity. Journal of Cell Science. 2005, V. 118, P. 3791–3803.
41. Gavrilovich M. Spectra image processing and application in biotechnology and pathology. Dissertation for Ph.D. Acta Universitatis Upsaliensis. Upsala. 2011, 63 p.
42. Perner P., Salvetti O. Advances in Mass Data Analysis of Images and Signals in Medicine, Biotechnology, Chemistry and Food Industry. Third International Conference, Leipzig, (Germany): Springer, 2008, Proceedings. 2008, 173 p.
43. Baert P., Meesen G., De Schynkel S., Poffijn A., Oostveldt P. V. Simultaneous in situ profiling of DNA lesion endpoints based on image cytometry and a single cell database approach. Micron. 2005, 36 (4), 321330. https://doi.org/ 10.1016/j.micron. 2005.01.005.
44. Berks G., Ghassemi A., von Keyserlingk D. G. Spatial registration of digital brain atlases based on fuzzy set theory. Comp. Med. Imag. Graph. 2001, 25 (1), 1?10. https://doi. org/10.1016/S0895-6111(00)00038-0.
45. Nowinski W. L., Belov D. The Cerefy Neuroradiology Atlas: a Talairach–Tournoux atlas-based tool for analysis of neuroimages available over the internet. NeuroImage. 2003, 20(1), 50–57. https://doi.org/10.1016/S1053-8119(03)00252-0
46. Chaplot S., Patnaik L. M., Jagannathan N. R. Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed. Signal Process. Control. 2006, 1 (1), 86–92. https://doi.org/ 10.1016/ j.bspc.2006.05.002.
47. Kovalev V. A., Petrou M., Suckling J. Detection of structural differences between the brains of schizophrenic patients and controls. Psychiatry Research: Neuroimaging. 2003, 124 (3), 177–189. https://doi.org/10.1016/S0925-4927(03) 00070-2.
48. Ara?jo T. Classification of breast cancer histology images using Convolutional Neural Networks. PloS One. 2017, 12 (6), e0177544.
49. Vecht-Lifshitz S. E., Ison A. P. Biotechnological applications of image analysis: present and future prospects. J. Biotechnol. 1992, 23 (1), 1–18.
50. Toga A. W., Thompson P. M. The role of image registration in brain mapping. Image and Vision Computing. 2001, 19 (1–2), 3–24.
51. Carro S. A., Scharcanski J. A framework for medical visual information exchange on the WEB. Computers in Biology and Medicine. 2006, V. 4, P. 327–338.
52. Chakravarty M. M., Bertrand G., Hodge C. P., Sadikot A. F., Collins D. L. The creation of a brain atlas for image guided neurosurgery using serial histological data. NeuroImage. 2006, 30 (2), 359–376. doi: 10.1016/ j.neuroimage.2005.09.041.
53. Dikshit A., Wu D., Wu C., Zhao W. An online interactive simulation system for medical imaging education. Comp. Med. Imag. Graph. 2005, 29 (6), 395–404. https://doi. org/10.1016/j.compmedimag.2005.02.001.
54. Singh R., Schwarz N., Taesombut N., Lee D., Jeong B., Renambot L., Lin A. W., West R., Otsuka H., Naito S., Peltier S. T., Martone M. E., Nozaki K., Leigh J., EllismanM.H. Real-time multi-scale brain data acquisition, assembly, and analysis using an end-to-end. OptIPuter Future Generation Computer Systems. 2006, 22, 1032–1039.
55. Stefanescu R., Pennec X., Ayache N. Grid powered nonlinear image registration with locally adaptive regularization. Medical Image Analysis. 2004. 8 (3), 325–342.
56. Ma Y., Hof P. R., Grant S. C., Blackband S. J., Bennett R., Slatest L., McGuigan M. D., Benveniste H. A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience. 2005, 135 (4), 12031215. https://doi.org/10.1016/j.neuroscience.2005.07.014
57. Yu-Len Huang. Computer-aided Diagnosis Using Neural Networks and Support Vector Machines for Breast Ultrasonography. J. Med. Ultrasound. 2009,17 (1), 17–24.
58. Prachi Damodhar Shahare, Ram Nivas Giri. Comparative Analysis of Artificial Neural Network and Support Vector Machine Classification for Breast Cancer Detection. International Research Journal of Engineering and Technology (IRJET). 2015, 2 (9).
59. Natrajan R., Sailem H., Mardakheh F. K., Garcia M. F., Tape C. G., Dowsett M., Bakal C., Yuan Y. Microenvironmental heterogeneity parallels breast cancer progression: a histology–genomic integration analysis. PloS medicine. 2016, 13 (2), e1001961. https://doi.org/10.1371/journal.pmed.1001961
60. Klyuchko O. M. Brain images in information systems for neurosurgery and neurophysiology. Electronics and control systems. 2009, 3(21), 152–156. (In Ukrainian).
61. Klyuchko O. M. Using of images’ databases for diagnostics of pathological changes in organism tissues. Electronics and control systems. 2009, 2 (20), 62–68. (In Ukrainian).
62. Klyuchko O. M. Elements of different level organization of the brain as material for electronic databases with images. Electronics and control systems. 2009, 1 (19), 69–75. (In Ukrainian).
63. Steimann F. On the representation of roles in object-oriented and conceptual modelling. Data& Knowedge Engineering. 2000, 35 (1), 83–106.
64. Klyuchko O. M., Managadze Yu. L., Pashkivsky A. O. Program models of 2D neuronal matrix for ecological monitoring and images’coding. Bulletin of the Engineering Academy. 2013, No 3–4, P. 77–82. (In Ukrainian).
65. Klyuchko O. M., Piatchanina T. V., Mazur M. G. Combined use of relation databases of images for diagnostics, therapy and prognosis of oncology diseases. «Integrated robototechnic complexes». Х ІІRTC-2017 Conference Proceedings. P. 275–276 (In Ukrainian).
66. Shutko V. M, Shutko O. M., Kolganova O. O. Methods and means of compression of information. Kyiv: Nauk. dumka. 2012. 168 p. (In Ukrainian).
67. Jecheva V., Nikolova E. Some clusteringbased methodology applications to anomaly intrusion detection systems. Int. J. Secur. Appl. 2016, 10 (1), 215–228. http://dx.doi. org/10.14257/ijsia.2016.10.1.20.
68. Iakovidis D. K., Maroulis D. E., Karkanis S. A. Texture multichannel measurements for cancer precursors’ identification using support vector machines. Measurement. 2004, V. 36, P. 297–313. 2004.09.010 https://doi. org/10.1016/j.measurement.
69. NguyenH. Q., Carrieri-KohlmanV., RankinS. H., Slaughter R., Stulbarg M. S. Internet-based patient education and support interventions: a review of evaluation studies and directions for future research. Comp. Biol. Med. 2004, 34 (2), 95–112. https://doi.org/10.1016/S0010-4825(03)00046-5
70. J?z?quel P., Loussouarn L., Gu?rin-Charbonnel C., Campion L., Vanier A., Gouraud W., Lasla H., Guette C., Valo I., Verri?le V., Campone M. Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response. Breast Cancer Res. 2015, 17 (1), 43. https://doi. org/10.1186/s13058-015-0550-y.
71. Bozhenko V. K. Multivariable analysis of laboratory blood parameters for obtaining diagnostic information in experimental and clinical oncology. The dissertation author’s abstract on scientific degree editions. Dc. Med. Study. Moscow. 2004. (In Russian).
72. Ko J. H., Ko E. A., Gu W., Lim I., Bang H., Zhou T. Expression profiling of ion channel genes predicts clinical outcome in breast cancer. Mol. Cancer. 2013, 12 (1), 106. https://doi.org/10.1186/1476-4598-12-106
73. Kawai M., Nakashima A., Kamada S., Kikkawa U. Midostaurin preferentially attenuates proliferation of triple-negative breast cancer cell lines through inhibition of Aurora kinase family. J. Bbiomed. Sci. 2015, 22 (1), 48. https://doi.org/10.1186/s12929-015-0150-2
74. Uhr K., Wendy J. C., Prager-van der Smissen, Anouk A. J. Heine, Bahar Ozturk, Marcel Smid, Hinrich W. H. G?hlmann, Agnes Jager, John A. Foekens, John W. M. Martens. Understanding drugs in breast cancer through drug sensitivity screening. SpringerPlus. 2015, 4 (1), 611. https://doi.org/10.1186/s40064-015-1406-8
75. OnopchukYu. M., BiloshitskyP. V., KlyuchkoO. M. Development of mathematical models based on the results of researches of Ukrainian scientists at Elbrus. Visnyk NAU. 2008, No 3, P. 146155. (In Ukrainian).
76. Ankur Poudel, Dhruba Bahadur Thapa, Manoj Sapkota. Cluster Analysis of Wheat (Triticum aestivum L.) Genotypes Based Upon Response to Terminal Heat Stress. Int. J. Appl. Sci. Biotechnol. 2017, 5 (2), 188–193. doi: http://dx.doi.org/ 10.3126/ijasbt.v5i2.17614.
77. Zaslavsky L., Ciufo S., Fedorov B., Tatusova T. Clustering analysis of proteins from microbial genomes at multiple levels of resolution. BMC Bioinform. 2016, 17 (8), 276. Published online 2016 Aug 31. https://doi.org/10.1186/s12859-016-1112-8
78. Zhou J., Richardson A. J., Rudd K. E. Eco-Gene-RefSeq: EcoGene tools applied to the RefSeq prokaryotic genomes. Bioinformatics. 2013, 29 (15), 1917–1918. Published: 04 June 2013. https://doi.org/10.1093/bioinformatics/btt302
79. Zhang J., Wu G., Hu X., Li S., Hao S. A Parallel Clustering Algorithm with MPI –
MKmeans. J. Comput. 2013, 8 (1), 1017. doi: 10.1109/PAAP. 2011.17.
80. Tatusova T., Zaslavsky L., Fedorov B., Haddad D., Vatsan A., Ako-adjei D., Blinkova O., Ghazal H. Protein Clusters. The NCBI Handbook [Internet]. 2nd edition. Available at https://www.ncbi.nlm.nih.gov/books/NBK242632.
81. Anderson J. G. Evaluation in health informatics: computer simulation. Computers in Biology and Medicine. 2002, 32 (3), 151–164. https://doi.org/10.1016/S0010-4825(02)00012-4
82. Aruna P., Puviarasan N., Palaniappan B. An investigation of neuro-fuzzy systems in psychosomatic disorders. Exp. Syst. Appl. 2005, 28 (4), 673–679.https://doi.org/10.1016/j.eswa.2004.12.024
83. Bange M. P., Deutscher S. A., Larsen D., Lins ley D., Whiteside S. A handheld decision support system to facilitate improved insect pest management in Australian cotton systems. Comp. Electron. Agricult. 2004, 43 (2), 131–147. https://doi. org/10.1016/j.compag.2003.12.003.
84. Beaulieu A. From brainbank to database: the informational turn in the study of the brain. Stud. Hist. Phil. Biol. Biomed. Sci. 2004, V. 35, P. 367–390. https://doi.org/ 10.1016/j.shpsc.2004.03.011.
85. Bedathur S. J., Haritsa J. R., Sen U. S. The building of BODHI, a bio-diversity database system. Inform. Syst. 2003, 28 (4), 347–367. https://doi.org/ 10.1016/S0306-4379(02)00073-X.
86. Brake I. Unifying revisionary taxonomy: insect exemplar groups. Abstr. XV SEL Congr. Berlin (Germany). 2007. 87. Braxton S. M., Onstad D. W., Dockter D. E., Giordano R., Larsson R., Humber R. A. Description and analysis of two internet-based databases of insect pathogens: EDWIP and VIDIL. J. Invertebr. Pathol. 2003, 83 (3), 185–195. https://doi.org/10.1016/S0022-2011(03)00089-2
88. Breaux A., Cochrane S., Evens J., Martindaled M., Pavlike B., Suera L., Benner D. Wetland ecological and compliance assessments in the San Francisco Bay Region, California, USA. J. Environm. Manag. 2005, 74 (3), 217237.
89. BuduraA., FhilippeCudr?-MaurouxP., AbererK. From bioinformatic web portals to semantically integrated Data Grid networks. Future Generation Computer Systems. 2007, 23 (3), 281–522. https://doi.org/10.1016/j.jenvman.2004.08.017
90. Burns G., Stephan K. E., Lud?scher B., Gupta A., K?tter R. Towards a federated neuroscientific knowledge management system using brain atlases. Neurocomputing.
2001, V. 3840, P. 1633–1641. https://doi.org/10.1016/S0925-2312(01)00520-3
91. Butenko S., Wilhelm W. E. Clique-detection models in computational biochemistry and genomics. Eur. J. Oper. Res. 2006, 173 (1), 117. https://doi.org/ 10.1016/j.ejor.2005.05.026.
92. Carro S. A., Scharcanski J. Framework for medical visual information exchange on the WEB. Comp. Biol. Med. 2006, 36 (4), 327–338. doi: 10.1016/ j.compbiomed.2004.10.004.
93. Chau M., Huang Z., Qin J., Zhou Y., Chen H. Building a scientific knowledge web portal: The NanoPort experience. Decision Support Systems. 2006. https://doi.org/10.1016/j.dss.2006.01.004
94. Chen M., Hofest?dt R. A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis. J. Biomed. Inform. 2006, 39 (2), 147–159. https://doi.org/10.1016/j.jbi.2005.05.005
95. Chli M., De Wilde P. Internet search: Subdivision-based interactive query expansion and the soft semantic web Applied Soft Computing. 2006. https://doi.org/10.1016/j.asoc.2005.11.003
96. Despont-Gros C., Mueller H., Lovis C. Evaluating user interactions with clinical information systems: A model based on human–computer interaction models. J. Biomed. Inform. 2005, 38 (3), 244–255. https://doi. org/10.1016/ j.jbi.2004.12.004.
97. Sun W., Sta rly B., Nam J., Darling A. Bio-CAD modelling and its applications in computer-aided tissue engineering. Computer-Aided Design. 2005, 37 (11), 1097–1114.
98. Marios D., Dikaiakos M. D. Intermediary infrastructuresfor the World Wide Web. Comp. Networks. 2004, V. 45, P. 421–447. https://doi.org/10.1016/S0166-1280(02)00618-8
99. Dimitrov S. D., Mekenyan O. G, Sinks G. D., Schultz T. W. Global modeling of narco tic chemicals: ciliate and fish toxicity. J. Mol. Struc.: Theochem. 2003, 622 (12), 63–70. https://doi.org/10.1016/S0166-1280(02)00618-8.
100. Dong Y., Zhuang Y., Chen K., Tai X. A hierarchical clustering algorithm based on fuzzy graph connectedness. Fuzzy Sets. Syst. 2006, V. 157, P. 1760–1774. https://doi.org/10.1016/j.fss.2006.01.001
101. Duan Y., Edwards J. S., Xu M. X. Web-based expert systems: benefits and challenges. Inf. Manag. 2005, 42 (6), 799–811. https://doi.org/10.1016/j.im.2004. 08.005.
102. Essen van D. C. Windows on the brain: the emerging role of atlases and databases in neuroscience. Curr. Opin. Neurobiol. 2002, 12 (5), 574–579. https://doi.org/10.1016/S0959-4388(02)00361-6
103. Fellbaum C., Hahn U., Smith B. Towards new information resources for public health From Word Net to Medical Word Net. J. Biomed. Inform. 2006, 39 (3), 321–332. https://doi.org/10.1016/j.jbi.2005.09.004
104. Ferraris M., Frixione P., Squarcia S. Network oriented radiological and medical archive. Comp. Physics Commun. 2001, V. 140, P. 226–232. https://doi.org/ 10.1016/ S0010-4655(01)00273-9.
105. Flower D. R., Attwood T. K. Integrative bioinformatics for functional genome annotation: trawling for G protein-coupled receptors. Reviews 55 Semin. Cell. Dev. Biol. 2004, 15 (6), 693–701. https://doi.org/10.1016/j.semcdb.2004.09.008.
106. Fink E., Kokku P. K., Nikiforou S., Hall L. O., Goldgof D. B, Krischer J. P. Selection of patients for clinical trials: an interactive web-based system. Art. Intell. Med. 2004, 31 (3), 241–254. https://doi.org/10.1016/j.artmed.2004.01.017
107. Fitzpatrick M. J., Ben-Shahar Y., Smid H. M., Vet L. E., Robinson G. E., Sokolowski M. B. Candidate genes for behavioural ecology. Trend Ecol. Evol. 2005, 20 (2), P. 96–104. https://doi.org/10.1016/j.tree.2004.11.017
108. Fox J., Alabassi A., Patkar V., Rose T., Black E. An ontological approach to modelling tasks and goals. Comp. Biol. Med. 2006, V. 36, P. 837–856. https://doi.org/10.1016/j.compbiomed.2005.04.011
109. Fu Zetian, Xu Feng, Zhou Yun, Shuan X. Z. Pig-vet: a web-based expert system for pig disease diagnosis. 2006. https://doi.org/10.1016/j.eswa.2005.01.011
110. Gaulton A., Attwood T. K. Bioinformatics approaches for the classification of G-protein-coupled receptors. Curr. Opin. Pharmacol. 2003, 3 (2), 114–120. https://doi.org/10.1016/S1471-4892(03)00005-5
111. Gevrey M., Worner S., Kasabov N., Pitt J., Giraudel J. L. Estimating risk of events using SOM models: A case study on invasive species establishment. Ecol. Modell. 2006, 197 (34), 361–372. https://doi.org/10.1016/j.ecolmodel.2006. 03.032.
112. GlenissonP., Gl?nzelW., JanssensF., MoorB. D. Combining full text and bibliometric information in mapping scientific disciplines. Inf. Proc. Manag. 2005, 41 (6), 1548–1572. https://doi.org/10.1016/j.ipm.2005.03.021.
113. Goldys E. M. Fluorescence Applications in Biotechnology and the Life Sciences. USA: John Wiley & Sons. 2009, 367 p.
114. Graham C. H., Ferrier S., Huettman F., Moritz C., Peterson A. T. New developments in museum-based informatics and applications in biodiversity analysis. Trend. Ecol. Evol. 2004, 19 (9), 497–503. https://doi.org/10.1016/ j.tree.2004.07.006.
115. Gruber T. R. A translation approach to portable ontologies. Knowledge Acquisition. 1993, 5 (2), 199–220. https://doi.org/10.1006/knac.1993.1008
116. Hirano S., Sun X., Tsumoto S. Comparison of clustering methods for clinical databases. Inform. Sci. 2004, 159 (34), P. 155–165. https://doi.org/10.1016/ j.ins.2003.03.011.
117. Hong Yu., Hatzivassiloglou V., Rzhetsky A., Wilbur W. J. Automatically identifying gene/protein terms in MEDLINE abstracts. J. Biomed. Inform. 2002, 35 (56), 322–330. https://doi.org/10.1016/S1532-0464(03)00032-7
118. Horn W. AI in medicine on its way from knowledgeintensive to data-intensive systems. Artificial Intelligence in Medicine. Elsevier. 2001, 23 (1), 512. https://doi.org/10.1016/S0933-3657(01)00072-0
119. Hsi-Chieh Lee, Szu-Wei Huang, Li E. Y. Mining protein–protein interaction information on the internet. Exp. Syst. Appl. Elsevier. 2006, 30 (1), 142–148. https://doi.org/10.1016/j.eswa.2005.09.083
120. Young R. Genetic toxicology: web–resources. Toxicology. 2002, 173 (1–2), P. 103–121.
121. Johnson S. B., Friedman R. Bridging the gap between biological and clinical informatics in a graduate training program. J. Biomed. Inform. 2007, 40 (1), 59–66. Epub. 2006 Mar 15. https://doi.org/10.1016/j.jbi.2006.02.011
122. Kaiser M., Hilgetag C. C. Modelling the development of cortical systems networks. Neurocomputing. 2004, V. 5860, P. 297–302. https://doi.org/10.1016/ j.neucom.2004.01.059.
123. Kane M. D., Brewer J. L. An information technology emphasis in biomedical informatics education. J. Biomed. Inform. 2007, 40 (1), 67–72. https://doi.org/10.1016/j.jbi.2006.02.006
124. Kannathal N., Acharya U. R., Lim C. M., Sadasivan P. K. Characterization of EEG. A comparative study. Comp. Meth. Progr. Biomed. 2005, 80 (1), 17–23. https://doi.org/10.1016/j.cmpb.2005.06.005
125. Koh W., McCormick B. H. Brain microstructure database system: an exoskeleton to 3D reconstruction and modelling. Neurocomputing. 2002, V. 4446, P. 1099–1105.https://doi.org/10.1016/S0925-2312(02)00426-5
126. Koh W., McCormick B. H. Registration of a 3D mouse brain atlas with brain microstructure data. Neurocomputing. 2003, V. 5254, P. 307–312. https://doi.org/ 10.1016/S0925-2312(02)00793-2.
127. Kulish V., Sourin A., Sourina O. Human electro encephalograms seen as fractal time series: Mathematical analysis and visualization. Comp. Biol. Med. 2006, 36 (3), 291–302. https://doi.org/10.1016/j.compbiomed.2004.12.003
128. Lubitz von D., Wickramasinghe N. Networkcentric healthcare and bioinformatics: Unified operations within three domains of knowledge. Exp. Syst. Appl. 2006, 30 (1), 11–23. https://doi.org/10.1016/j.eswa.2005.09.069
129. Martin-Sanchez F., Iakovidis I., Norager S., Maojo V., de Groen P., Van der Lei J., Jones T., Abraham-Fuchs K., Apweiler R., Babic A., Baud R., Breton V., Cinquin P., Doupi P., Dugas M., Eils R., Engelbrecht R., Ghazal P., Jehenson P., Kulikowski C., Lampe K., DeMoor G., Orphanoudakis S., Rossing N., Sarachan B., Sousa A., Spekowius G., Thireos G., Zahlmann G., Zv?rov? J., Hermosilla I., Vicente F. J. Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care. J. Biomed. Inform. 2004, 37 (1), 30–42. https://doi.org/10.1016/j.jbi.2003.09.003
130. Masseroli M., Visconti A., Bano S. G. Pinciroli F. He@lthCo-op: a web-based system to support distributed healthcare co-operative work. Comp. Biol. Med. 2006, 36 (2), 109–127. https://doi.org/10.1016/j.compbiomed.2004.09.005
131. Moon S., Byun Y., Han K. FSDB: A frameshift signal database. Comp. Biol. Chem. 2007, 31 (4), 298–302. https://doi.org/10.1016/j.compbiolchem.2007.05.004
132. Orgun B., Vu J. HL7 ontology and mobile agents for interoperability in heterogeneous medical information systems. Comp. Biol. Med. 2006, 36 (78), 817–836. https://doi.org/10.1016/j.compbiomed.2005.04.010
133. P?rez-Rey D., Maojo V., Garc?a-Remesal M., Alonso-Calvo R., Billhardt H., Martin-S?nchez F., Sousa A. Ontofusion: Ontology-based integration of genomic and clinical databases. Comp. Biol. Med. 2006, 36 (78), 712–730. doi: 10.1016/ j.compbiomed.2005.02.004.
134. Krishtal O. A., Kiskin N. I., Tsyndrenko A. Ya., Klyuchko E. M. Pharmacological properties of amino acid receptors in isolated hippocampal neurons. In: Receptors and ion channels. Ed. By Ovchinnikov Y. A., Hucho F. Berlin-New York: Walter de Gruyter. 1987, P. 127–137.
135. KlyuchkoE. M, KlyuchkoZ. F., BeloshitskyP. V. Some adaptation characteristics of insects in mountains of Prielbrussie. Nalchik (Russia), “Hypoxia: automatic analysis of hypoxic states of healthy people and sick ones”. 2005, V. 1, P.137–140. (In Russian).
136. Klyuchko Z. F., Klyuchko E. M. Analysis of taxonomic structure of moth fauna (Lepidoptera: Noctuidae s.l.) of Ukraine according to monitoring data. Eversmannia, 2012, 3 (33), 41–45. (In Russian).
137. Klyuchko Z. F., Klyuchko E. M. Moth (Lepidoptera: Noctuidae s. l.) of Chercasska region of Ukraine according to results of many-year monitoring. Eversmannia. 2014, No 37, 32–49 (In Russian).
138. Gonchar O., Klyuchko E., Mankovskaya I. Role of complex nucleosides in the reversal of oxidative stress and metabolic disorders induced by acute nitrite poisoning Indian Journal of Pharmacology. 2006, 38 (6), 414–418.
139. Gonchar O., Klyuchko E., Seredenko M., Oliynik S. Corrections of prooxidant – antioxidant homeostasis of organism under hypoxia of different genesis by yackton, new pharmacological preparation. Acta Physiol. Pharmacol. Bulg. 2003, V. 27, P. 53–58.
140. Klyuchko O., Klyuchko Z., Lizunova A. Electronic Noctuidae database: some problems and solutions. Proceed. 16th European Congress of Lepidopterology. Cluj (Romania), 2009. P. 31–32.
141. Klyuchko O., Klyuchko Z., Lizunova A. Noctuidae fauna of Ukrainian Karpathy: results of monitoring (1956–2008), Proceed. 16th European Congress of Lepidopterology. Cluj (Romania), 2009. P. 31.
142. Klyuchko O.M., Klyuchko Z. F., Lizunova A. G. Development Of Database For Noctuidae Species In Ukraine. 5-th International Conference On the Biology Of Butterflies, Roma, 2007.
143. Klyuchko Z. F., Klyuchko O. M. Diversity аnd biogeography Of Noctuidae Species In Ukraine. 5-th International Conference On the Biology Of Butterflies, Roma, 2007.
144. Klyuchko O. M., Beloshitsky P. V. Investigation of insect adaptation characteristics in Prielbrussie in 2004–2005. Mater. VIII World Congress of International Society for Adaptive Medicine (ISAM). Moskva (Russia). 2006, Р. 165–166.
145. Beloshitsky P. V., Klyuchko O. M. Contribution of Sirotinin’s school into adaptation medicine. Mater. VIII World Congress of International Society for Adaptive Medicine (ISAM). Moskva (Russia), 2006. Р. 158.
146. Klyuchko O. M., Klyuchko Z. F. Ukrainian Noctuidae Database. Mater. Of XIV SEL Congress. Roma (Italy), 2005. P. 49.
147. Klyuchko Z. F., Klyuchko O. M. Noctuidae (Lepidoptera) of Donbass, Ukraine. Mater. Of XIV SEL Congress. Roma (Italy), 2005. P. 41–42.
148. Beloshitsky P., Klyuchko O., Onopchuck Yu., Onopchuck G. Mathematic model for hypoxic states development for healthy people and ones with ischemic heart disease. High altitude medicine and biology: Mater. ISMM Congress. Beijing (China). 2004, V. 5, P. 251.
149. Beloshitsky P., Klyuchko O., Kostyuk O., Beloshitsky S. Peculiarities of high mountain factors influence on organism. High altitude medicine and biology: Mater. ISMM Congress. Beijing (China). 2004, V. 5, P. 250.
150. Gonchar O., Klyuchko O., Beloshitsky P. Ways of myocardial metabolic disorders correction at hypoxia by new pharmacological preparations. High altitude medicine and biology: Mater. ISMM Congress. Beijing(China). 2004, V. 5, P. 249.
151. Gonchar O., Klyuchko O., Seredenko M., Oliynyk B. Correction of metabolic disorders at hypoxia by new pharmacological preparations. Mater. 3 FEPS Congress. Nice (France). 2003, P. 228.
152. Troyan V., Klyuchko O., Taran N. About some ways to change gender standards. Standard: abweichung: Mater. Intl. Kongress in Natur wissenschaft und Technik. Berlin (Germany), 2003. P. 208.
153. Seredenko M., Gonchar O., Klyuchko O., Oliynyk S. Peculiarities of prooxidant – antioxidant balance of organism under hypoxia of different genesis and its corrections by new pharmacological preparations. Acta Physiologica Hungarica. Budapest (Hungary). 2002, 89 (1–3), 292.
154. Klyuchko O. M., Kiskin N. I., Krishtal O. A., Tsyndrenko A. Ya Araneidae toxins as antagonists of excitatory amino acid responses in isolated hippocampal neurons. X School on biophysics of membrane transport. Szczyrk (Poland). 1990, V. 2, P. 271.
155. Akaike N., Kawai N., Kiskin N. I., Krishtal O. A., Tsyndrenko A. Ya., Klyuchko O. M. Spider toxin blocks excitatory amino acid responses in isolated hippocampal pyramidal neurons. Neurosci. Lett. 1987, V. 79, P. 326–330.