SSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 10, No 3, 2017
https://doi.org/10.15407/biotech10.03.057
Р. 57-64, Bibliography 36, English
Universal Decimal Classification: 576.311.34:582.661.15
CHLOROPLASTS ULTRASTRUCTURAL CHANGES AS BIOMARKERS OF ACID RAIN AND HEAVY METALS POLLUTION
Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv
The aim of the work was to confirm the possibility of structural changes of Spinacea olearacea L. chloroplasts usage as biomarkers for assessing of environmental pollution by acid rain and heavy metals. Chloroplasts ultrastructural changes were recorded by transmission electron microscopy. Data on changes in the structure of chloroplasts under the influence of these factors are obtained, in particular the heterogeneity of thylakoid grana packing, the membranes thickness, the starch grains presence, and the lumen space increase as compared with the control. These structural changes can be applied as markers of abiotic stresses influence, notably acid rain and heavy metals, and for the creation of new sustainable high-tech varieties of agricultural crops.
Key words: Spinacea olearacea L., imitated acid rains, heavy metals, chloroplast structure, biomarkers..
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017
References
1. Bazhin N. M. Acid rain. Soros Educational J. 2001, 7 (7), 47–52. (In Russian).
2. Seinfield J. H. Atmospheric Chemistry and Physics from Air Pollution to Climate Damage. AVI publishing Co, West Print Connecticut. 1998, P. 224.
3. Bazilevich N. I., Grebenshchikov O. S., Tishkov A. Geographic patterns of the structure and functioning of ecosystems. Moskwа: Science. 1986, P. 296. (In Russian).
4. Ivanov A. F. The growth of woody plants and soil acidity. Minsk: Science and technology. 1970, P. 216. (In Russian).
5. Neufeld H. S. Direct foliar effects of simulated acid rain. Damage, growth and gas exchange. New Phytol. 1985, V. 99, P. 389–405. https://doi.org/10.1111/j.1469-8137.1985.tb03667.x
6. Velikova V. Light and CO2 responses of photosynthesis and chlorophyll fluorescence characteristics in bean plants after simulated acid rain. Physiol. Plant. 1999, V. 107, P. 77–83. https://doi.org/10.1034/j.1399-3054.1999.100111.x
7. Qiu D. Effects of simulated acid rain on chloroplast activity in Dimorcarpus longana Lour. cv. wulongling leaves. Ying Yong Sheng Tai Xue Bao. 2002, V. 12, P. 1559–1562.
8. Hogan G. D. Effects of acid deposition on hybrid poplar-primary or predisposing stress. Water Air Soil Pollut. 1995, V. 85, P. 1419–1424. https://doi.org/10.1007/BF00477180
9. Shan Y. The individual and combined effects of ozone and simulated acid rain on chlorophyll content, carbon allocation and biomass accumulation of armand pine seedlings. Water Air Soil Pollut. 1995, V. 85, P. 1399–1404. https://doi.org/10.1007/BF00477177
10. Gabara B. Changes in the ultrastructure of chloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum Mill. leaves sprayed with acid rain. Plant Sci. 2003, V. 164, P. 507–516. https://doi.org/10.1016/S0168-9452(02)00447-8
11. Stoyanova D. Effects of simulated acid rain on chloroplast ultrastructure of primary leaves of Phaseolus vulgaris. Biol. Plant. 1997, V. 40, P. 589–595. https://doi.org/10.1023/A:1001761421851
12. Tarhanen S. Ultrastructural responses of the lichen Bryoria fuscesens to simulated acid rain and heavy metal deposition. Ann. Bot. 1998, V. 82, P. 735–746. https://doi.org/10.1006/anbo.1998.0734
13. Ivanchenko V. M. Photosynthesis and the structural state of the chloroplast. Minsk: Science and technology. 1974, P. 160. (In Russian).
14. Shabelskaya E. F., Gvardiyan V. N. Status of the photosynthetic apparatus of higher green plants in full shade. Minsk: Nauka. 1971, P. 132–138. (In Russian).
15. Stroganov B. P. Kabanov N. I. Structure and function of cells under salinity. Moskwa: Nauka. 1970, P. 318. (In Russian).
16. Wrischer M. Elektronenmikroskopische Untersuchungen der Zellnekrobiose. Protoplasma. 1965, V. 60, Р. 355–400.
17. Vodka M. V., Bilyavs'ka N. O. Chloroplast structural and functional changes as biomarkers. Biotechnol. acta. 2016, 9 (1), 103–107.
18. Rokitsky P. F. Biological Statistics. Minsk: Vysheyshaya School. 1973, P. 320. (In Russian).
19. Kratsch H. A., Wise R. R. The ultrastructure of chilling stress. Plant, Cell, Environm. 2000. 23 (4), 337–350. https://doi.org/10.1046/j.1365-3040.2000.00560.x
20. Gamaley Y. Phloem of leaf: Development of the structure and functions in connection with the evolution of flowering plants. Leningrad: Science. 1990, P. 144. (In Russian).
21. Peng H. Accumulation andultrastructural distribution of copper in Elsholtzia splendens. J. Zhejiang Univ. Sci. 2005, V. 6, Р. 311–318.
22. Hakmaoui A. Copper and cadmium tolerance, uptake and effect on chloroplast ultrastructure. Studies on Salix purpurea and Phragmites australis. Zh. Naturforschung. 2007, 62 (5–6), 417–426. https://doi.org/10.1515/znc-2007-5-616
23. Jiang H. M. Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environm. Pollut. 2007, 147 (3), 750–756. https://doi.org/10.1016/j.envpol.2006.09.006
24. Bernal M. Excess copper effect on growth, chloroplast ultrastructure, oxygen-evolution activity and chlorophyll fluorescence in Glycine max cell suspensions. Physiologia Plantarum. 2006, 127 (2), 312–325. https://doi.org/10.1111/j.1399-3054.2006.00641.x
25. Doncheva S. Influence of succinate on zinc toxicity of pea plants. J. Plant nutrition. 2001, 24 (6), 789–804. https://doi.org/10.1081/PLN-100103774
26. Panou-Filotheou H. Effects of copper toxicity on leaves of oregano (Origanum vulgare subsp. hirtum). Ann. Bot. 2001, 88 (2), 207–214. https://doi.org/10.1006/anbo.2001.1441
27. Austin J. R. Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. The Plant Cell. 2006, 18 (7), 1693–1703. https://doi.org/10.1105/tpc.105.039859
28. Br?h?lin C. The plastoglobule: a bag full of lipid biochemistry tricks. Photochem. Photobiol. 2008, 84 (6), 1388–1394. https://doi.org/10.1111/j.1751-1097.2008.00459.x
29. Spicher L. Unexpected roles of plastoglobules (plastid lipid droplets) in vitamin K 1 and E metabolism. Curr. Opin. Plant Biol. 2015, V. 25, P. 123–129. https://doi.org/10.1016/j.pbi.2015.05.005
30. Besagni C. A mechanism implicating plastoglobules in thylakoid disassembly during senescence and nitrogen starvation. Planta. 2013, 237 (2), 463–470. https://doi.org/10.1007/s00425-012-1813-9
31. Farmer E. E. ROS-mediated lipid peroxidation and RES-activated signaling. Ann. Rev. Plant Biol. 2013, V. 64, P. 429–450. https://doi.org/10.1146/annurev-arplant-050312-120132
32. Demidchik V. Mechanisms and physiological roles of K+ efflux from root cells. J. Plant Physiol. 2014, 171 (9), 696–707. https://doi.org/10.1016/j.jplph.2014.01.015
33. Lin Q. Subcellular localization of copper in tolerant and non-tolerant plant. J. Environm. Sci. 2005, 17 (3), 452–456.
34. Azzarello E. Ultramorphological and physiological modifications induced by high zinc levels in Paulownia tomentosa. Environm. Exp. Bot. 2012, 81 (1), 11–17. https://doi.org/10.1016/j.envexpbot.2012.02.008
35. Kawachi M. A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Plant, Cell Physiol. 2009, 50 (6), 1156–1170. https://doi.org/10.1093/pcp/pcp067
36. Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 2001, 212 (4), 475–486. https://doi.org/10.1007/s004250000458