"Biotechnologia Acta" V. 9, No 5, 2016
https://doi.org/10.15407/biotech9.05.054
Р. 54-63, Bibliography 41, English
Universal Decimal Classification: 576.314.6:577.322.23:576.524:57.043
MODIFICATION OF ERYTHROCYTE MEMBRANE PROTEINS WITH POLYETHYLENE GLYCOL 1500
N. G. Zemlianskykh, L. A. Babijchuk
Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
The aim of the work was to study the effect of polyethylene glycol PEG-1500 on the Ca2+-ATPase activity and changes in CD44 surface marker expression in human erythrocyte membranes. Determination of the Ca2+-ATPase activity was carried out in sealed erythrocyte ghosts by the level of accumulation of inorganic phosphorus. Changes in the expression of CD44 and amount of CD44+-erythrocytes were evaluated by flow cytometry. The inhibition of Ca2+-ATPase activity and a reduction in the level of CD44 expression and also the decrease in the amount CD44+-cells were found, reflecting a fairly complex restructuring in the membrane-cytoskeleton complex of erythrocytes under the influence of PEG-1500. Effect of PEG-1500 on the surface CD44 marker could be mediated by modification of proteins of membrane-cytoskeleton complex, as indicated by accelerated loss of CD44 in erythrocyte membranes after application of protein cross-linking reagent diamide. Reduced activity of Ca2+-ATPase activity may contribute to the increase in intracellular Ca2+ level and thus leads to a modification of interactions of integral proteins with cytoskeletal components that eventually could result in membrane vesiculation and decreasing in expression of the CD44 marker, which is dynamically linked to the cytoskeleton.
Key words: Ca2+-ATPase, CD44, polyethylene glycol 1500, erythrocyte.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2016
References
1. Hutanu D., Frishberg M. D., Guo L., Darie C. C. Recent applications of polyethylene glycols (PEGs) and PEG derivatives. Mod. Chem. Appl. 2014, 2 (2), 1?6. https://doi.org/10.4172/2329-6798.1000132
2. Babijchuk L. A., Zemlianskykh N. G. Optimization and advantages of washing-out method of erythrocyte cryopreservation with PEO-1500. Problems for Cryobiology. 2001, V. 1, P. 35?44. (In Russian).
3. Feuerecker M., Kaufmann I., Salam A. P., Chouk?r A. Effects of cryopreservation with polyethylene glycol on the expression of CD11b and CD62L on the surface of polymorphonuclear leukocytes. Cryo Lett. 2012, 33 (2), 151–160.
4. Gao D., Critser J. K. Mechanisms of cryoinjury in living cells. ILAR J. 2000, V. 41, P. 187–196. https://doi.org/10.1093/ilar.41.4.187
5. Stoll C., Holovati J. L., Acker J. P., Wolkers W. F. Synergistic effects of liposomes, trehalose, and hydroxyethyl starch for cryopreservation of human erythrocytes. Biotechnol. Prog. 2012, 28 (2), 364–371. https://doi.org/10.1002/btpr.1519
6. El-Shewy H. M., Kendall W. F. Jr., Darrabie M., Collins B. H., Opara E. C. Polyvinyl pyrrolidone: a novel cryoprotectant in islet cell cryopreservation. Cell Transplant. 2004, 13 (3), 237–243. https://doi.org/10.3727/000000004783983927
7. Borland G., Ross J. A., Guy K. Forms and functions of CD44. Immunology. 1998, 93 (2), 139–148. https://doi.org/10.1046/j.1365-2567.1998.00431.x
8. Fischer T. M., Haest C. W., Stohr M., Kamp D., Deuticke B. Selective alteration of erythrocyte deformability by SH–reagents: evident for an involvement of spectrin in membrane shear elasticity. Biochem. Biophys. Acta. 1978, 510 (2), 270–282. https://doi.org/10.1016/0005-2736(78)90027-5
9. Haest C. W. Kamp D., Deuticke B. Topology of membrane sulfhydryl groups in the human erythrocyte. Demonstration of a non-reactive population in intrinsic proteins. Biochem. Biophys. Acta. 1981, 643 (2), 319–326. https://doi.org/10.1016/0005-2736(81)90077-8
10. Zemlianskykh N. G., Babijchuk L. A. Effect of cryopreservation stresses on erythrocyte surface marker CD44. Biol. Membr. 2014, 31 (6), 416–426. (In Russian).
11. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971, 10 (13), 2606–2617. https://doi.org/10.1021/bi00789a030
12. Pokudin N. I., Petruniaka V. V., Orlov S. N. Does calmodulin participate in the regulation of the Ca-pump of erythrocytes in vivo? Biokhimia. 1988, 53 (5), 753–758. (In Russian).
13. Rathbun W., Betlach V. Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate. Anal. Biochem. 1969, 28 (1–3), 436–445. https://doi.org/10.1016/0003-2697(69)90198-5
14. Bredford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72 (7), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
15. Benaim G., de Meis L. Activation of the purified erythrocyte plasma membrane Ca2+-ATPase by organic solvents. FEBS Lett. 1989, 244 (2), 484–486. https://doi.org/10.1016/0003-2697(76)90527-3https://doi.org/10.1016/0003-2697(76)90527-3
16. McConnell E. J., Wagoner M. J., Keenan C. E., Raess B. U. Inhibition of calmodulin-stimulated (Ca2+ + Mg2+)-ATPase activity by dimethyl sulfoxide. Biochem. Pharmacol. 1999, 57 (1), 39–44. https://doi.org/10.1016/0003-2697(76)90527-3
17. Zemlyanskikh N. G., Kofanova O. A. Modulation of human erythrocyte Ca2+–ATPase activity by glycerol: the role of calmodulin. Biochemistry (Mosc). 2006, 71 (8), 900–905. https://doi.org/10.1134/S0006297906080128
18. Kucherenko Y. V., Bernhardt I. The study of Ca2+ influx in human erythrocytes in isotonic polyethylene (glycol) 1500 (PEG–1500) and sucrose media. Ukr. Biokhim. Zh. 2006, 78 (6), 46–52.
19. Timasheff S. N. Solvent stabilization of protein structure. Meth. Mol. Biol. 1995, V. 40, P. 253–269. https://doi.org/10.1385/0-89603-301-5:253
20. Carpenter J. F., Crowe J. H. The mechanism of cryoprotection of proteins by solutes. Cryobiology. 1988, 25 (3), 244–255. https://doi.org/10.1016/0011-2240(88)90032-6
21. Konov K. B., Isaev N. P., Dzuba S. A. Low-temperature molecular motions in lipid bilayers in the presence of sugars: insights into cryoprotective mechanisms. J. Phys. Chem. B. 2014, 118 (43), 12478–12485. https://doi.org/10.1021/jp508312n
22. Holovati J. L., Wong K. A., Webster J. M., Acker J. P. The effects of cryopreservation on red blood cell microvesiculation, phosphatidylserine externalization, and CD47 expression. Transfusion. 2008, 48 (8), 1658–1668. https://doi.org/10.1111/j.1537-2995.2008.01735.x
23. Jank H., Salzer U. Vesicles generated during storage of red blood cells enhance the generation of radical oxygen species in activated neutrophils. Sci. World J. 2011, V. 11, P. 173–185. https://doi.org/10.1100/tsw.2011.25
24. Bosman G. J., Lasonder E., Groenen-D?pp Y. A., Willekens F. L., Werre J. M. The proteome of erythrocyte – derived microparticles from plasma: new clues for erythrocyte aging and vesiculation. J. Proteomics. 2012, 76 (Spec. N), 203–210. https://doi.org/10.1016/j.jprot.2012.05.031
25. Balasubramanian S. K., Wolkers W. F., Bischof J. C. Membrane hydration correlates to cellular biophysics during freezing in mammalian cells. Biochim. Biophys. Acta. 2009, 1788 (5), 945–953. https://doi.org/10.1016/j.bbamem.2009.02.009
26. Nunomura W., Takakuwa Y., Tokimitsu R., Krauss S. W., Kawashima M., Mohandas N. Regulation of CD44 – protein 4.1 interaction by Ca2+ and calmodulin. Implications for modulation of CD44 – ankyrin interaction. J. Biol. Chem. 1997, 272 (48), 30322–30328. https://doi.org/10.1074/jbc.272.48.30322
27. Zhao W. Y., Xiong H. Y., Yuan Q., Zeng L., Wang L. M., Zhu Y. H. In vitro effects of polyethylene glycol in University of Wisconsin preservation solution on human red blood cell aggregation and hemorheology. Clin. Hemorheol. Microcirc. 2011, 47 (3), 177–185.
28. Lentz B. R. PEG as a tool to gain insight into membrane fusion. Eur. Biophys. J. 2007, 36 (4–5), 315–326. https://doi.org/10.1007/s00249-006-0097-z
29. Maggio B., Ahkong Q. F., Lucy J. A. Poly(ethylene glycol), surface potential and cell fusion. Biochem. J. 1976, 158 (3), 647–650. https://doi.org/10.1042/bj1580647
30. Ahkong Q. F., Desmazes J. P., Georgescauld D., Lucy J. A. Movements of fluorescent probes in the mechanism of cell fusion induced by poly(ethylene glycol). J. Cell Sci. 1987, 88 (3), 389–398.
31. Winterhalter M., Burner H., Marzinka S., Benz R., Kasianowiczt J. J. Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential. Biophys. J. 1995, 69 (4), 1372–1381. https://doi.org/10.1016/S0006-3495(95)80006-8
32. Arnold K., Herrmann A., Pratsch L., Gawrisch K. The dielectric properties of aqueous solutions of poly(ethylene glycol) and their influence on membrane structure. Biochim. Biophys. Acta. 1985, 815 (3), 515–518. https://doi.org/10.1016/0005-2736(85)90381-5
33. Bailey F. E., Koleske J. V. Poly(ethylene Oxide). New York: Academic Press. 1976, 173 р.
34. Chen J., Spear S. K., Huddleston J. G., Rogers R. D. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem. 2005, 7 (2), 64–82. https://doi.org/10.1039/b413546f
35. Kawaguchi M., Tohyama M., Mutoh Y., Takahashi A. Ellipsometric study of polymer monolayers spread at the air/water interface. Langmuir. 1988, 4 (2), 407–410. https://doi.org/10.1021/la00080a025
36. Sauer B. B., Yu H., Yazdanian M., Zografi G., Kim M. W. An elipsometric study of polymer monolayers at the air/water interface. Macromolecules. 1989, 22 (5), 2332–2337. https://doi.org/10.1021/ma00195a057
37. Arnold K., Pratsch L., Gawrisch K. Effect of poly(ethylene glycol) on phospholipid hydration and polarity of the external phase. Biochim. Biophys. Acta. 1983, 728 (1), 121–128. https://doi.org/10.1016/0005-2736(83)90444-3
38. Herrmann A., Pratsch L., Arnold K., Lassmann G. Effect of poly(ethylene glycol) on the polarity of aqueous solutions and on the structure of vesicle membranes. Biochim. Biophys. Acta. 1983, 733 (1), 87–94. https://doi.org/10.1016/0005-2736(83)90093-7
39. Tilcock C. P. S., Fisher D. Interaction of phospholipid membranes with PEGs. Biochim. Biophys. Acta. 1979, 577 (1), 53–56. https://doi.org/10.1016/0005-2736(79)90089-0
40. Lehtonen J. Y. A., Kinnunen P. K. J. Changes in the lipid dynamics of liposomal membranes induced by PEG. Biophys. J. 1994, 66 (6), 1981–1990. https://doi.org/10.1016/S0006-3495(94)80991-9
41. Lehtonen J. Y., Kinnunen P. K. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes. Biophys J. 1995, 68 (2), 525?535. https://doi.org/10.1016/S0006-3495(95)80214-6