"Biotechnologia Acta" V. 9, No 5, 2016
https://doi.org/10.15407/biotech9.05.045
Р. 45-53, Bibliography 16, English
Universal Decimal Classification: 579.841.1+577.18
GENES ENCODING SYNTHESIS OF PHENAZINE-1-CARBOXYLIC ACID IN Pseudomonas batumici
V. V. Klochko 1, S. D. Zagorodnya 1, O. N Reva 2
1 Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
2 Centre for Bioinformatics and Computational Biology, University of Pretoria, South Africa
The aim of this research was to elucidate the role of fenesin-1-carboxylic acid of Pseudomonas batumici and diversity of the genes encoding its synthesis in bacteria of the genus Pseudomonas. Phenazine-1-carboxylic acid in the concentration of 10 ?g/ml stimulated the biofilm formation by batumin-producing strain. The presence of the corresponding gene in the genome of P. batumici was not successfully confirmed by PCR amplification with a set of primers designed for Pseudomonas. The complete genome sequencing of P. batumici has revealed a homologous gene that could encode synthesis of this compound. Comparative study of sequenced Pseudomonas genomes showed presence of at least two genetically diverse groups of phenаzine coding orthologous genes. These genes could have distributed among rhizobacteria by the horizontal gene transfer.
Key words: Pseudomonas batumici, phenazine-1-carboxylic acid, biofilm formation.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2016
References
1. Leland S., Pierson L., Pierson E. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl. Microbiol. Biotechnol. 2010, V. 86, P. 1659–1670. doi: 10.1007/s00253-010-2509-3.
2. Bernd H., Rehm A. Pseudomonas: Model Organism, Pathogen, Cell Factory. Verlag GmbH.: Wiley-VCH, 2008, 403 p. doi: 10.1002/9783527622009.
3. Wink M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry. 2003, V. 64, P. 3–19. https://doi.org/10.1016/S0031-9422(03)00300-5
4. Mavrodi D., Ksenzenko V., Bonsall R., Cook R., Boronin A. M., Thomashow L. A seven-gene locus for synthesis is of phenazine-1-carboxylic acid by Pseudomonas ?uorescens 2–79. J. Bacteriol. 1998, N 180, P. 2541–2548.
5. Kiprianova E. A., Klochko V. V., Zelena L. B., Churkina L. N., Avdeeva L. V. Pseudomonas batumici sp.nov., the antibiotic-producing bacteria isolated from soil of the Caucasus Black Sea coast. Microbiol. zh. 2011, 73 (5), 3–8.
6. Klochko V. V., Zelena L. B., Kim J. Y., Avdeeva L. V., Reva O. N. Prospects of a new antistaphylococcal drug batumin revealed by molecular docking and analysis of the complete genome sequence of the batumin-producer Pseudomonas batumici UCM B-321. Int. J. Antimicrob. Agents. 2016, N 47, Р. 56–61. doi: 10.1016/j.ijantimicag.2015.10.006.
7. Darling A., Mau B., Blattner F., Perna N. Mauve: multiple alignment of conserved Genomic sequence with rearrangements. Genome Res. 2004, N 14, P. 1394–1403. doi: 10.1101/gr.2289704.
8. O’Toole G., Kaplan H., Kolter R. Bio?lm formation as microbial development. Ann. Rev. Microbiol. 2000, N 54, P. 49–79. doi: 10.1146/annurev.micro.54.1.49. https://doi.org/10.1146/annurev.micro.54.1.49
9. Klochko V. V., Zelena L. B., Chugunova K. O., Avdeeva L. V. Phenazine complex analysis of strains Pseudomonas chlororaphis subsp. aureofaciens UCM B-111 and UCM B-306. Achievements and problems of genetics, selection, biotechnology. 2012, V. 4, P. 358–362 (In Ukranian).
10. Klochko V. V., Kiprianova E. A., Churkina L. N., Avdeeva L. V. Antimicrobial spectrum of antibiotic batumin. Microbiol. zh. 2008, 70 (5), 41–46 (In Russian).
11. Steinberger R., Allen A., Hansa H., Holden P. Elongation correlates with nutrient deprivation in Pseudomonas aeruginosa – unsaturates biofilms. Microb. Ecol. 2002, 43 (4), 416–423. https://doi.org/10.1007/s00248-001-1063-z
12. Chincholkar S., Thomashow L. Microbial Phenazines: Biosynthesis, Agriculture and Health. Springer-Verlag Berlin: Heidelberg. 2013, 248 р. https://doi.org/10.1007/978-3-642-40573-0
13. Nikolaev Yu. A., Plakunov V. K. Biofilm—“City of Microbes” or an Analogue of Multicellular Organisms? Microbiologiiya. 2007, 76 (2), 149–163 (In Russian). https://doi.org/10.1134/s0026261707020014
14. Hernandez M., Kappler A., Newman D. Phenazines and other redox-active antibiotics promote microbial mineral reduction. Applied and Environmental Microbiology. 2004, N 70, P. 921–928. doi: 10.1128/AEM.70.2.921-928.2004.
15. Maddula V., Pierson E., Pierson L. Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30-84: effects on biofilm formation and pathogen inhibition. J. Bacteriol. 2008, N 190, P. 2759–2766. doi: 10.1128/JB.01587-07.
16. Wang Y., Wilks J., Danhorn T., Ramos I., Croal L., Newman D. Phenazine-1-Carboxylic Acid promotes bacterial biofilm development via ferrous iron acquisition. J. Bacteriol. 2011, 193 (14), 3606–3617. doi:10.1128/JB.00396-11.