ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 9, No 3, 2016
Р. 44-51, Bibliography 38, English
Universal Decimal Classification: 577.122:577.112.083
https://doi.org/10.15407/biotech9.03.044
INTERACTION OF RECOMBINANT DIPHTHERIA TOXOIDS WITH CELLULAR RECEPTORS in vitro
K. Yu. Manoilov, A. Ju. Labyntsev, N. V. Korotkevych, D. V. Kolibo, S. V. Komisarenko
Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
The aim of the research was to compare in vitro characteristics of reception of the natural diphtheria toxin — DT and its nontoxic recombinant analogs — toxoids. For assessing ligand-receptor interaction the method of immunoenzyme analysis and ELISA was used, where the bonding layer recombinant analogues of diphtheria toxin cell receptor HB-EGF from sensitive and resistant to the toxin of the organisms were served. According to the results of ELISA the natural diphtheria toxin, in contrast to recombinant toxoids — CRM197, and B subunit, interacted with mouse HB-EGF with a very low affinity. While human HB-EGF with an equally high affinity connected as toxoids as native diphtheria toxin. Therefore, the analyzed recombinant analogs of toxin obtained in E. coli cells did not reproduce in full measure the receptor specificity of the natural toxin, which should be considered in the case of using these proteins as biotech products.
Key words: diphtheria toxin, B subunit of diphtheria toxin, CRM197, HB-EGF.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2016
References
1. Collier R. J. Diphtheria toxin: mode of action and structure. Bacteriol Rev. 1975, 39 (1), 54–85.
2. Naglich J. G., Metherall J. E., Russell D. W., Eidels L. Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell. 1992, 69 (6), 1051–1061. https://doi.org/10.1016/0092-8674(92)90623-K
3. Higashiyama S., Abraham J. A., Miller J., Fiddes J. C., Klagsbrun M. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science. 1991, 251 (4996), 936–939. https://doi.org/10.1126/science.1840698
4. Higashiyama S., Lau K., Besner G. E., Abraham J. A., Klagsbrun M. Structure of heparin-binding EGF-like growth factor. Multiple forms, primary structure, and glycosylation of the mature protein. J. Biol Chem. 1992, 267 (9), 6205–6212.
5. Abraham J. A., Damm D., Bajardi A., Miller J., Klagsbrun M., Ezekowitz R. A. Heparin-binding EGF-like growth factor: characterization of rat and mouse cDNA clones, protein domain conservation across species, and transcript expression in tissues. Biochem. Biophys. Res. Commun. 1993, 190 (1), 125–133. https://doi.org/10.1006/bbrc.1993.1020
6. Cha J. H., Brooke J. S., Eidels L. Toxin binding site of the diphtheria toxin receptor: loss and gain of diphtheria toxin binding of monkey and mouse heparin-binding, epidermal growth factor-like growth factor precursors by reciprocal site-directed mutagenesis. Mol. Microbiol. 1998, 29 (5), 1275–1284. https://doi.org/10.1046/j.1365-2958.1998.01015.x
7. Morris R. E., Saelinger C. B. Diphtheria toxin does not enter resistant cells by receptor-mediated endocytosis. Infect. Immun. 1983, 42 (2), 812–817.
8. Mitamura T., Higashiyama S., Taniguchi N., Klagsbrun M., Mekada E. Diphtheria toxin binds to the epidermal growth factor (EGF)-like domain of human heparin-binding EGF-like growth factor/diphtheria toxin receptor and inhibits specifically its mitogenic activity. J. Biol. Chem. 1995, 270 (3), 1015–1019. https://doi.org/10.1074/jbc.270.3.1015
9. Mitamura T., Umata T., Nakano F., Shishido Y., Toyoda T., Itai A., Kimura H., Mekada E. Structure-function analysis of the diphtheria toxin receptor toxin binding site by site-directed mutagenesis. J. Biol. Chem. 1997, 272 (43), 27084–27090. https://doi.org/10.1074/jbc.272.43.27084
10. Moehring T. J., Moehring J. M. Interaction of diphtheria toxin and its active subunit, fragment A, with toxin-sensitive and toxin-resistant cells. Infect. Immun. 1976, 13 (5), 1426–1432.
11. El Hage T., Decottignies P., Authier F. Endosomal proteolysis of diphtheria toxin without toxin translocation into the cytosol of rat liver in vivo. The FEBS J. 2008, 275 (8), 1708–1722. https://doi.org/10.1111/j.1742-4658.2008.06326.x
12. Heagy W. E., Neville D. M. J. Kinetics of protein synthesis inactivation by diphtheria toxin in toxin-resistant L cells. Evidence for a low efficiency receptor-mediated transport system. J. Biol. Chem. 1981, 256 (24), 12788–12792.
13. Didsbury J. R., Moehring J. M., Moehring T. J. Binding and uptake of diphtheria toxin by toxin-resistant Chinese hamster ovary and mouse cells. Mol. Cell. Biol. 1983, 3 (7), 1283–1294. https://doi.org/10.1128/MCB.3.7.1283
14. Labyntsev A. I., Korotkevich N. V., Kaberniuk A. A., Romaniuk S. I., Kolybo D. V., Komisarenko S. V. Interaction of diphtheria toxin B subunit with sensitive and insensitive mammalian cells. Ukr. Biokhim. Zh. 2010, 82 (6), 65–75. (In Ukrainian).
15. Kaberniuk A. A., Labyntsev A. I., Kolybo D. V., Oliinyk O. S., Redchuk T. A., Korotkevych N. V., Gorchev V. F., Karakhim S. O., Komisarenko S. V. Fluorescent derivatives of diphtheria toxin subunit B and their interaction with Vero cells. Ukr. Biokhim. Zh. 2009, 81 (1), 67–77. (In Ukrainian).
16. Labyntsev A. J., Korotkevych N. V., Manoilov K. J., Kaberniuk A. A., Kolybo D. V., Komisarenko S. V. Recombinant fluorescent models for studying the diphtheria toxin. Bioorg. Khim. 2014, 40 (4), 401–409. https://doi.org/10.1134/S1068162014040086
17. Kolybo D. V., Romaniuk S. I., Radavskii Iu. L., Komisarenko S. V. Effect of diphtheria toxin on the viability of phagocytes and B-lymphocytes in animals ensitive and insensitive to it. Ukr. Biokhim. Zh. 2002, 74 (2), 30–36. (In Russian).
18. Harlow E., Lane D. P. Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 1988.
19. Bradwell A., Catty D., Dykes P., Gregory J., Johnson G., Jones E., Milner A., Murphy G., Poole G., Ray T., Raykundalia C., Thomas G., Vaughan A. Antibodies: A Practical Approach. Volume 2. Moskva: Mir. 1991, 384 p. (In Russian).
20. Korotkevich N. V., Kolibo D. V., Labyntsev A. J., Romaniuk S. I., Komisarenko S. V. Obtaining of recombinant human heparin-binding EGF-like growth factor and perspectives of its application in biotechnology. Biotechnol. аcta. 2010, 3 (4), 44–53. (In Ukrainian).
21. Sch?gger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987, 166 (2), 368–379. https://doi.org/10.1016/0003-2697(87)90587-2
22. Earle W. R., Schilling E. L., Stark T. H., Straus N. P., Brown M. F., Shelton E. Production of Malignancy in Vitro. IV. The Mouse Fibroblast Cultures and Changes Seen in the Living Cells. J. Natl. Cancer Inst. 1943, 4 (2), 165–212. doi: 10.1093/jnci/4.2.165.
23. Moehring J. M., Moehring T. J. Comparison of diphtheria intoxication in human and nonhuman cell lines and their resistant variants. Infect. Immun. 1976, 13 (1), 221–228.
24. Gabliks J., Falconer M. Interaction of diphtheria toxin with cell cultures from susceptibile and resistant animals. J. Exp. Med. 1966, 123 (4), 723–732. https://doi.org/10.1084/jem.123.4.723
25. Sanford K. K., Earle W. R., Likely G. D. The growth in vitro of single isolated tissue cells. J. Natl. Cancer Inst. 1948, 9 (3), 229–246.
26. Johnson V. G., Wilson D., Greenfield L., Youle R. J. The role of the diphtheria toxin receptor in cytosol translocation. J. Biol. Chem. 1988, 263 (3), 1295–1300.
27. Suzuki K., Mizushima H., Abe H., Iwamoto R., Nakamura H., Mekada E. Identification of diphtheria toxin R domain mutants with enhanced inhibitory activity against HB-EGF. J. Biochemistry. 2015, 157 (5), 331–343. https://doi.org/10.1093/jb/mvu079
28. Kaczorek M., Delpeyroux F., Chenciner N., Streeck R. E., Murphy J. R., Boquet P., Tiollais P. Nucleotide sequence and expression of the diphtheria tox228 gene in Escherichia coli. Science. 1983, 221 (4613), 855–858. https://doi.org/10.1126/science.6348945
29. Ratti G., Rappuoli R., Giannini G. The complete nucleotide sequence of the gene coding for diphtheria toxin in the corynephage omega (tox+) genome. Nucleic Acids Res. 1983, 11 (19), 6589–6595. https://doi.org/10.1093/nar/11.19.6589
30. Schneewind O., Missiakas D. M. Protein secretion and surface display in Gram-positive bacteria. Philos. Trans. R Soc. Lond. B Biol. Sci. 2012, 367 (1592), 1123–1139. https://doi.org/10.1098/rstb.2011.0210
31. Liu X., Yang Y., Zhang W., Sun Y., Peng F., Jeffrey L., Harvey L., McNeil B., Bai Z. Expression of recombinant protein using Corynebacterium Glutamicum: progress, challenges and applications. Crit. Rev. Biotechnol. 2016, 36 (4), 652–664. https://doi.org/10.3109/07388551.2015.1004519
32. Sockolosky J. T., Szoka F. C. Periplasmic production via the pET expression system of soluble, bioactive human growth hormone. Protein Expr. Purif. 2013, 87 (2), 129–135. https://doi.org/10.1016/j.pep.2012.11.002
33. Mekada E., Uchida T. Binding properties of diphtheria toxin to cells are altered by mutation in the fragment A domain. J. Biol. Chem. 1985, 260 (22), 12148–12153.
34. Hu V. W., Holmes R. K. Single mutation in the A domain of diphtheria toxin results in a protein with altered membrane insertion behavior. Biochim. Biophys. Acta. 1987, 902 (1), 24–30. https://doi.org/10.1016/0005-2736(87)90132-5
35. Malito E., Bursulaya B., Chen C., Lo Surdo P., Picchianti M., Balducci E., Biancucci M., Brock A., Berti F., Bottomley M. J., Nissum M., Costantino P., Rappuoli R., Spraggon G. Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc. Natl. Acad. Sci. USA. 2012, 109 (14), 5229–5234. https://doi.org/10.1073/pnas.1201964109
36. Salmas R. E., Mestanoglu M., Unlu A., Yurtsever M., Durdagi S. Mutated form (G52E) of inactive diphtheria toxin CRM197: molecular simulations clearly display effect of the mutation to NAD binding. J. Biomol. Struct. Dyn. 2016, Р. 1–7. https://doi.org/10.1080/07391102.2015.1119060
37. Papini E., Colonna R., Schiavo G., Cusinato F., Tomasi M., Rappuoli R., Montecucco C. Diphtheria toxin and its mutant crm 197 differ in their interaction with lipids. FEBS Lett. 1987, 215 (1), 73–78. https://doi.org/10.1016/0014-5793(87)80116-3
38. Saito M., Iwawaki T., Taya C., Yonekawa H., Noda M., Inui Y., Mekada E., Kimata Y., Tsuru A., Kohno K. Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat. Biotechnol. 2001, 19 (8), 746–750. https://doi.org/10.1038/90795