ISSN 2410-7751 (Print)
ISSN 2410-776X (on-line)
"Biotechnologia Acta" V. 9, No 2, 2016
https://doi.org/10.15407/biotech9.02.007
Р. 7-18, Bibliography 54, English
Universal Decimal Classification: 579.841: 577.114
EXOPOLYSACCHARIDES SYNTHESIS ON INDUSTRIAL WASTES
T. P. Pirog, M. O. Ivakhniuk, A. A. Voronenko
National University of Food Technologies, Kyiv, Ukraine
Data from the literature and our own studies on the synthesis of microbial exopolysaccharides on various industrial waste (food industry, agricultural sector, biodiesel production, etc.) are reviewed here. Utilization of industrial waste to obtain exopolysaccharides will solve not only the problem of secondary raw materials accumulation, but also will reduce the costs of the biosynthesis of practically valuable metabolites. In addition, some kinds of waste have a number of advantages compared to traditional carbohydrate substrates: aside from environmental health benefits, there are technological ones, like the presence of growth factors. There is also no need to use anti-foam substances and substrate sterilization in the latter case.
Key words: exopolysaccharides, industrial wastes, biosynthesis intensification.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2016
References
1. Poli A., Di Donato P., Abbamondi G. R., Nicolaus B. Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea. 2011. . http://dx.doi.10.1155/2011/693253.
2. Mahapatra S., Banerjee D. Fungal exopolysaccharide: production, composition and applications. Microbiol. Insights. 2013. http://dx.doi.10.4137/MBI.S10957 .
3. Roca C., Alves V. D., Freitas F., Reis M. A. Exopolysacchrides enriched in rare sugars: bacterial sources , production, and applications. Front. Microbiol. 2015. http://dx.doi.10.3389/fmicb.2015.00288 .
4. Badel S., Bernardi T., Michaud P. New perspectives for Lactobacilli exopolysaccharides. Biotechnol. Adv. 2010, 29 (1), 54−66. http://dx.doi.10.1016/j.biotechadv.2010.08.011 .
5. Zhan X. B., Lin C. C., Zhang H. T. Recent advances in curdlan biosynthesis, biotechnological production, and applications. Appl. Microbiol. Biotechnol. 2011, 93 (2), 525–531. http://dx.doi.10.1007/s00253-011-3740-2 .
6. Apetrei N. S., Calugaru A., Badulescu M. M., Lupu A. R., Moscovici M., Mocanu G., Mihai D., Szegli G., Cremer L. The effects of some Curdlan derivatives on Dectin-1 expression and cytokine production in human peripheral blood mononuclear cells. Roum Arch. Microbiol. Immunol. 2010, 69 (2), 61–66.
7. Dennehy K. M., Brown G. D. The role of the beta-glucan receptor Dectin in control of fungal infection. J. Leukoc. Biol. 2007, 82 (2), 253–258.
8. Pidhorskyy V., Iutinska G., Pirog T. Intensification of microbial synthesis technologies. Кyiv: Nauk. Dumka. 2010, 327 p. [In Ukrainian].
9. Prasanna P. H., Bell A., Grandison A. S., Charalampopoulos D. Emulsifying, rheological and physicochemical properties of exopolysaccharide produced by Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205. Carbohydr. Polym. 2012, 90 (1), 533–540. http://dx.doi.10.1016/j.carbpol.2012.05.075 .
10. Kreyenschulte D., Krull R., Margaritis A. Recent advances in microbial biopolymer production and purification. Crit. Rev. Biotechnol. 2012, 34 (1), 1–15. http://dx.doi.10.3109/07388551.2012.743501 .
11. Poli A., Anzelmo G., Nicolaus B. Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar. Drugs. 2010, 8 (6), 1779–1802. http://dx.doi.10.3390/md8061779 .
12. Pawar S. T., Bhosale A. A., Gawade T. B., Nale T. R. Isolation, screening and optimization of exopolysaccharide producing bacterium from saline soil. J. Microbiol. Biotechnol. Res. 2013, 3 (3), 24–31.
13. Mata J. A., Béjar V., Bressollier P., Tallon R., Urdaci M.C., Quesada E., Llamas I. Characterization of exopolysaccharides produced by three moderately halophilic bacteria belonging to the family Alteromonadaceae. J. Appl. Microbiol. 2008, 105 (2), 521–528. http://dx.doi.10.1111/j.1365-2672.2008.03789.x.
14. Banik R. M., Santhiagu A., Upadhyay S. N. Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology. Bioresour. Technol. 2007, 98 (4), 792–797.
15. Kumar A. S., Mody K., Jha B. Bacterial exopolysaccharides – a perception. J. Basic Microbiol. 2007, V. 47, P. 103–117.
16.Pirog T. P., Grytsenko N. A., Sofilkanych A. P., Savenko I. V. Technologies of synthesis of organic substances by microorganisms using waste biodiesel production. Biotechnologia Acta. 2015, 8 (3), 9−27. http://dx.doi.10.15407/biotech8.03.009 .
17. Pirog T. P., Sofilkanich A. P., Konon A. D., Grytsenko N. A. Biosynthesis of surfactants on industrial waste. Biotechnologia Acta. 2014, 7 (5), 9−26. [In Ukrainian]. http://dx.doi.10.15407/biotech7.05.099 .
18. Moosavi A., Karbassi A. Bioconversion of sugar-beet molasses into xanthan gum. J. Food Process. Preserv. 2010, V. 34, P. 316–322. http://dx.doi.10.1111/j.1745-4549.2009.00376.x .
1119. Abdel-Aziz S. M., Hamed H. A., Mouafi F. E., Gad A. S. Acidic pH-shock induces the production of an exopolysaccharide by the fungus Mucor rouxii: utilization of beet-molasses. N. Y. Sci. J. 2012, 5 (2), 52–61.
20. De Sousa Costa L. A., Campos M. I., Druzian J. I., de Oliveira A. M., de Oliveira E. N. Biosynthesis of xanthan gum from fermenting shrimp shell: yield and apparent viscosity. Int. J. Polym. Sci. 2014. http://dx.doi.org/10.1155/2014/273650 .
21. Küçükaşik F., Kazak H., Güney D., Finore I., Poli A., Yeniqün O., Nicolaus B., Oner E. T. Molasses as fermentation substrate for levan production by Halomonas sp. Appl. Microbiol. Biotechnol. 2011, 89 (6), 1729–1740. http://dx.doi.10.1007/s00253-010-3055-8 .
22. Sirajunnisa A. R., Vijayagopal V., Viruthagiri T. Medium optimization for the production of exopolysaccharide by Bacillus subtilis using synthetic sources and agro wastes. Turk. J. Biol. 2013, 37 (3), 280–288. http://dx.doi.10.3906/biy-1206-50 .
23. Sirajunnisa A. R., Vijayagopal V., Viruthagiri T. Medium optimization and in vitro antioxidant activity of exopolysaccharide produced by Bacillus subtilis. Korean J. Chem. Eng. 2014, 31 (2), 296–303.
24. Sheoran S. K., Dubey K. K., Tiwari D. P., Singh B. P. Directive production of pullulan by altering cheap source of carbons and nitrogen at 5 l bioreactor level. Chem. Eng. 2012. http://doi:10.5402/2012/867198 .
25. Öner E. T. Microbial production of extracellular polysaccharides from biomass. In: Pretreatment techniques for biofuels and biorefineries. Ed. Z. Fang. Springer-Verlag Berlin Heidelberg. 2013, 457 p.
26. Sirajunnisa A. R., Vijayagopal V., Viruthagiri T. Influence of various parameters on exopolysaccharide production from Bacillus subtilis. Int. J. Chem. Tech. Res. 2013, 5 (5), 2221–2228.
27. Savvides A. L., Katsifas E. A., Hatzinikolaou D. G., Karaqouni A. D. Xanthan production by Xanthomonas campestris using whey permeate medium. World J. Microbiol. Biotechnol. 2012, 28 (8), 2759–2764. http://dx.doi.10.1007/s11274-012-1087-1 .
28. Gilani S. L., Heydarzadeh H. D., Mokhtarian N., Alemian A., Kolaei M. Effect of preparation conditions on xanthan gum production and rheological behavior using cheese whey by Xanthomonas сampestris. Aust. J. Basic Appl. Sci. 2011, 5 (10), 855–859.
29. Fialho M. P., Martins L. O., Donval M. L., Leitao J. H., Ridout M. J., Jay A. J., Morris V. J., Sa-Correia I. I. Structures and properties of gellan polymers produced by Sphingomonas paucimobilis ATCC 31461 from lactose compared with those produced from glucose and from cheese whey. Appl. Environ. Microbiol. 1999, 65 (6), 2485–2491.
30. Fu J. F., Tseng Y. H. Construction of lactose-utilizing Xanthomonas campestris and production of xanthan gum from whey. Appl. Environ. Microbiol. 1990, 56 (4), 919–923.
3ё. Ghazal S., Elsayed W., Badr U., Gebreel H., Khalil K. Genetically modified strains of Xanthomonas campestris higher xanthan producer and capable to utilize whey. Curr. Res. Bacteriol. 2011, 4 (2), 44–62.
32.Krupodorova T. A. Growth of Ganoderma applanatum (Pers.) Pat. and G. lucidum (Curtis) P. Karst. strains and synthesis of polysaccharides in submerged culture. Biotekhnolohiia. 2011, 4 (6), 60–67. [In Ukrainian].
33. Sun M. L., Liu S. B., Qiao L. P., Chen X. L., Pang X., Shi M., Zhang X. Y., Qin Q. L., Zhou B. C., Zhang Y. Z., Xie B. B. A novel exopolysaccharide from deep-sea bacterium Zunongwangia profunda SM-A87: low-cost fermentation, moisture retention, and antioxidant activities. Appl. Microbiol. Biotechnol. 2014, 98 (17), 7437–7445. doi: 10.1007/s00253-014-5839-8.
34. Rabha B., Narda R. S., Ahmed B. Effect of some fermentation substrates and growth temperature on exopolysaccharide production by Streptococcus thermophilus BN1. Int. J. Biosci. Biochem. Bioinform. 2012, 2 (1), 44–47. doi: 10.7763/ijbbb.2012.v2.67.
35. Da Silva P. G., Mack M., Contiero J. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 2009, 27 (1), 30–39.
36. Brandão L. V., Assis D. J., López J. A., Espiridião M. C. A., Echevarria E. M., Druzian J. I. Bioconversion from crude glycerin by Xanthomonas campestris 2103: xanthan production and characterization. Braz. J. Chem. Eng. 2013, 30 (4), 737–746. http://dx.doi.org/10.1590/S0104-66322013000400006.
37. Freitas F., Alves V. D., Pais J., Carvalheira M., Costa N., Oliveira R., Reis M. A. Production of a new exopolysaccharide by Pseudomonas oleovorans NRRL B-14682 grown on glycerol. Bioresour. Technol. 2010, 45 (3), 297–305.
38. Rafulla D. P., Veera G. G. Biodiesel production from waste cooking oil using sulfuric acid and microwave irradiation processes. Environ. Res. J. 2012. doi:10.4236/jep.2012.31013.
39. Salvador C., Martins M. do R., Candeias M. de F., Karmali A., Arteiro J. M., Caldeira A. T. Characterization and biological activities of protein-bound polysaccharides produced by cultures of Pleurotus ostreatus. J. Agr. Sci. Tech. 2012, V. 2, P. 1296–1306.
40. Arli S. D., Trivedi U. B., Patel K. C. Curdlan-like exopolysaccharide production by Cellulomonas flavigena UNP3 during growth on hydrocarbon substrates. World J. Microbiol. Biotechnol. 2011, 27 (6), 1415–1422. doi: 10.1007/s11274-010-0593-2.
41. Israilides C., Smith A., Scanlon B., Barnett C. Pullulan from agro-industrial wastes. Biotechnol. Genet. Eng. Rev. 1999, 16 (1), 309–324. doi.org/10.1080/02648725.1999.10647981.
42. Sellami M., Oszako T., Miled N., Ben Rebah F. Industrial wastewater as raw material for exopolysaccharide production by Rhizobium leguminosarum. Braz. J. Microbiol. 2015, 46 (2), 407−413. doi: 10.1590/S1517-838246220140153.
43. Kang Y. S., Park W. Protection against diesel oil toxicity by sodium chloride-induced exopolysaccharides in Acinetobacter sp. strain DR1. J. Biosci. Bioeng. 2010, 109 (2), 118–123. doi: 10.1016/j.jbiosc.2009.08.001.
44.Olefirenko Yu. Effect of exogenous precursors on the rheological properties of microbial polysaccharide ethapolan. Ukrainian Food J. 2012, 1 (2), 31–35. [In Ukrainian].
45.Pirog T., Olefirenko Yu. Synthesis of ethapolan exopolysaccharide on the basis of sunflower oil depending on inoculum quality. Scientific Works of NUFT. 2015, 21 (1), 46–52. [In Ukrainian].
46. Ivahniuk M. O., Pirog T. P. Intensification of microbial exopolysaccharide ethapolan synthesis under Acinetobacter sp. IМV B-7005 cultivation on sunflower oil. Ukr. Food J. 2014, 3 (2), 257–262.
47. Gowdhaman D., Padmapriya S., Ponnusami V. Effect of citric acid inducer on xanthan gum production from cassava bagasse, a potential agro-industry waste. Res. J. Pharm. Biol. Chem. Sci. 2013, 4 (3), 370–374.
48. Vidhyalakshmi R., Vallinachiyar C., Radhika R. Production of xanthan from agro-industrial waste. J. Adv. Scient. Res. 2012, 3 (2), 56–59.
49. Meleigy S. A. Bioutilization of grape waste for exopolysaccharide production using Alternaria Alternata non-pigment strain. Isotope Rad. Res. 2009, 41 (4), 945–955.
50. Jozala A. F., Pértile R. A., dos Santos C. A., de Carvalho Santos-Ebinuma V., Seckler M. M., Gama F. M., Pessoa A. Jr. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl. Microbiol. Biotechnol. 2015, 99 (3), 1181–1190. doi: 10.1007/s00253-014-6232-3.
51. Nery T. B. R., da Cruz A. J. G., Druzian J. I. Use of green coconut shells as an alternative substrate for the production of xanthan gum on different scales of fermentation. Polymeros. 2013, 23 (5), 602–607. http://dx.doi.org/10.4322/polimeros.2013.094.
52. Chandrasekaran M., Bahkali A. H. Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology – Review. Saudi J. Biol. Sci. 2013, 20 (3), 105–120. doi.org/10.1016/j.sjbs. 2012.12.004.
53. Purwadi R., Rizki Z., Aprianti F. P. Cabbage extract as a precursor in xanthan gum production using Xanthomonas campestris. Pro-Biotech. 2009, 3 (9), 402–404.
54. Taskin M., Ozkan B., Atici O., Aydogan M. N. Utilization of chicken feather hydrolysate as a novel fermentation substrate for production of exopolysaccharide and mycelial biomass from edible mushroom Morchella esculenta. Int. J. Food Sci. Nutr. 2012, 63 (5), 597–602. doi: 10.3109/09637486.2011.640309/.