ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 9, No 1, 2016
https://doi.org/10.15407/biotech9.01.048
Р. 48-54, Bibliography 21, English
Universal Decimal Classification: 579.63:577.29
D. R. Аbdulina 1, L. М. Purish 1, G. А. Iutynska 1, М. М. Nikitin 2, A. G. Golikov 2
1 Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Кyiv
2 LLC GenBit, Moscow, Russian Federation
The possibility of the designing test-systems for specific detection of corrosive-relevant sulfate-reducing bacteria using real-time PCR assay were investigated. This method of the bacteria identification is based on the detection of the functional genes, encoding key enzymes of dissimilatory sulfate-reduction pathway, i.e. dissimilatory sulfitreductase α subunit dsrA. It was established among the six test-systems specificity reveal only three designed on the base of Desulfotomaculum, Desulfovibrio, Desulfobulbus genera sequences. The most corrosive-relevant strain Desulfovibrio sp. UCM B-11503 dsrA gene detected more effectively (threshold cycle was 20,0), than less corrosive-relevant strains Desulfovibrio sp. UCM B-11504 (threshold cycle was 28,1) and for Desulfotomaculum sp. UCM B-11505 and Desulfomicrobium sp. UCМ B-11506 were 24.9 and 23.1 cycles, respectively. Test-systems allowed identifying corrosive-relevant sulfate-reducing bacteria faster and more effective. This approach will serve as a base for monitoring of these bacteria for estimating corrosion sites on the high-level dangerous man-caused objects.
Кey words: sulfate-reducing bacteria, dissimilatory sulfate-reduction genes, test-systems, real-time PCR.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2016
References
1. Nazina T. N., Shestakova N. N., Grigor’yan A. A., Mikhailova E. M., Tourova T. P. Poltaraus A. B., Feng C., Ni F., Belyaev S. S. Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang Oil Field (P.R. China). Microbiology (Mikrobiologiya). 2006, 75 (1), 55–66.
2. Gerasimchuk A. L., Butorova O. P., Karnachuk O. V., Shatalov A. A., Novikov A. L., Yanenko A. S., Pimenov N. V., Lein A. Y. The search for sulfate-reducing bacteria in mat samples from the lost city hydrothermal field by molecular cloning. Microbiology (Mikrobiologiya). 2010, 79 (1), 96–105.
http://dx.doi.org/10.1134/S0026261710010133
3. Leloup J., Loy A., Knab N. J., Borowski C., Wagner M., Jorgensen B. B. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ. Microbiol. 2007, 9 (1), 131–142.
http://dx.doi.org/10.1111/j.1462-2920.2006.01122.x
4. Guan J., Zang B. L., Mbadinga S. M., Liu J. F., Gu J. D., Mu B. Z. Functional genes (dsr) approach reveals similar sulphidogenic prokaryotes diversity but different structure in saline waters from corroding high temperature petroleum reservoirs. Appl. Microbiol. Biotechnol. 2014, V. 98, P. 1871–1882. http://dx.doi.org/10.1007/s00253-013-5152-y
5. Asaulenko L. G., Abdulina D. R., Purish L. M. Taxonomic position of certain representatives of sulfidogenic corrosive microbial community. Mikrobiol. Zh. 2010, 72 (4), 3–10. (In Ukrainian).
6. Purish L. M., Asaulenko L. G., Abdulina D. R., Iutynska G. A. Biodiversity of sulfate-reducing bacteria growing on objects of heating systems. Mikrobiol. Zh. 2014, 76 (3), 11–17. (In Russian).
7. Iutynska G. A., Purish L. M., Abdulina D. R. Corrosive-relevant sulfidogenic microbial communities of man-caused ecotopes. Lambert Academic Publishing. 2014, 173 p. (In Russian).
8. Schadt C. W., Liebich J., Chong S. C., Gentry T. J., He Z., Pan H., Zhou J. Desigh and use of functional gene microarrays (FGAs) for the characterization of microbial communities. Meth. Microbiol. 2005, V. 34, P. 331–368.
http://dx.doi.org/10.1016/S0580-9517(04)34011-0
9. Huber H., Jannasch H., Rachel R., Fuchs, Stetter K. O. Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Syst. Appl. Microbiol. 1997, 20 (3), 374–380.
http://dx.doi.org/10.1016/S0723-2020(97)80005-7
10. Laue H., Friedrich M., Ruff J., Cook A. M. Dissimilatory sulfite reductase (desulfoviridin) of the taurine-degrading, non-sulfate-reducing bacterium Bilophila wadsworthia RZATAU contains a fused DsrB-DsrD subunit.
J. Bacteriol. 2001, 183 (5), 1727–1733.
http://dx.doi.org/10.1128/JB.183.5.1727-1733.2001
11. Deplancke B., Hristova K. R., Oakley H. A., McCracken V. J., Aminov R., Mackie R. I., Gaskins H. R. Molecular ecological analysis of the succession and diversity of sulfate-reducing bacteria in the mouse gastrointestinal tract. Appl. Environ. Microbiol. 2000, 66 (5), 2166–2174.
12. Friedrich M. W. Phylogenetic analysis reveals multiple lateral transfers od adenosine-5’-phophosulfate reductase genes among sulfate-reducing microorganisms. J. Bacteriol. 2002, 184 (1), 278–289.
13. Wagner M., Roger A. J., Flax J. L., Brusseau G. A., Stahl D. A. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 1998, V. 180, P. 2975–2982.
14. Postgate J. R. The sulphate-reducing bacteria. Cambridge: University Press. 1984, 208 p.
15. Rebrikov D. V., Samatov G. A., Trofimov D. Yu., Semenov P. A., Savylova A. M., Kofiady I. A., Abramov D. D. Real-time PCR. Rebrikov D.V. (Ed.). Мoskva: Binom. 2015, 223 p. (In Russian).
16. Lipova E. V., Batkaev Ye. А., Vitvitskaya Yu. G., Trofimov D. Yu., Borodin А. М., Boldyreva М. N., Skorkina Yu. А., Babaev О. R. The method of diagnosis microbiota disbalance for different human biotopes and level of its severity. Patent Russian Federation 2362808. 27. 07. 2009.
17. Daly K., Sharp R. J., McCarthy A. J. Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria. Microbiology. 2000, V. 146, P. 1693–1705.
http://dx.doi.org/10.1099/00221287-146-7-1693
18. Orphan V. J., Hinchers K.-U., Ussler I. W., Paull C. K., Taylor L. T., Sylva S. P., Hayes J. M., Delong E. F. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Applied and Environmental Microbiology. 2001, 67 (4), 1922–1934.
http://dx.doi.org/10.1128/AEM.67.4.1922-1934.2001
19. Meyer B., Kuever J. Phylogeny of the alpha and beta subunits of the dissimilatory adenosine-5?-phosphosulfate (APS) reductase from sulfate-reducing prokaryotes – origin and evolution of the dissimilatory sulfate-reduction pathway. Microbiology. 2007, V. 153, P. 2026–2044.
http://dx.doi.org/10.1099/mic.0.2006/003152-0
20. Muyzer G., Stams J. M. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 2008, V. 6, P. 441–454.
http://dx.doi.org/10.1038/nrmicro1892
21. Tourova T. P., Novikova E. V., Nazina T. N., Kuznetzov B. B., Poltaraus A. B. Heterogeneity of the nucleotide sequences of the 16s rRNA genes of the type strain of Desulfotomaculum kuznetsovii. Microbiology (Mikrobiologiya). 2001. 70 (6), 378–384.