ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 9, No 1, 2016
https://doi.org/10.15407/biotech9.01.038
Р. 38-47, Bibliography 27, English
Universal Decimal Classification: 873.088.5:661.185
Т. P. Pirog 1, 2, E. V. Panasyuk 1, L. V. Nikityuk 1, G. O. Iutinska 2
1 National University of Food Technologies, Kyiv
2 Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
The aim of the work was investigation of antimicrobial effect of Nocardia vaccinii ІMV B-7405 surfactants, synthesized in various culture conditions, against phytopathogenic bacteria of genera Pseudomonas, Xanthomonas, and Pectobacterium. The antimicrobial properties of surfactant were determined in suspension culture by Koch method and also by index of the minimum inhibitory concentration. Surfactants were extracted from supernatant of cultural liquid using mixture of chloroform and methanol (2: 1). It has been established that antimicrobial properties of surfactants depend on the nature of the carbon source in the medium (refined vegetable oil, as well as waste oil after frying potatoes and meat, glycerol), the duration of the cultivation (5 and 7 days), the degree of purification of the surfactants (the supernatant of cultural liquid, purified surfactants solution) and the test culture type. The highest antimicrobial activity was exhibited by purified surfactants solutions synthesized by microorganisms on the waste oil after potato frying (decreased survival of pathogenic bacteria by 50–95%), and surfactants formed within 7 days of strain B-7405 ІMV cultivation on all test substrates (minimum inhibitory concentration 7–40 µg/mL, which is several times lower than the surfactant, synthesized for 5 days).
These data are promising for the development of ecologically friendly biopreparations for the regulation of the number of phytopathogenic bacteria.
Key words: Nocardia vaccinii ІMV B-7405, surfactants.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2016
References
1. Kalyani R. Bishwambhar M., Suneetha V. Recent potential usage of surfactant from microbial origin in pharmaceutical and biomedical arena: a perspective. Int. Res. J. Pharm. 2011, 2 (8), 11–15.
2. Baindara P., Mandal S. M., Chawla N., Singh P. K., Pinnaka A. K., Korpole S. Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample. AMB Express. 2013, 3:2. doi: 10.1186/2191-0855-3-2.
3. Mandal S. M., Barbosa A. E., Franco O. L. Lipopeptides in microbial infection control: scope and reality for industry. Biotechnol. Adv. 2013, 31 (2), 338–345. doi: 10.1016/j.biotechadv.2013.01.004.
4. Campos J. M., Stamford T. L., Sarubbo L. A., de Luna J. M., Rufino R. D., Banat I. M. Microbial biosurfactants as additives for food industries. Biotechnol. Prog. 2013, 29 (5), 1097–1108. doi: 10.1002/btpr.1796.
5. Sachdev D. P., Cameotra S. S. Biosurfactants in agriculture. Appl. Microbiol. Biotechnol. 2013, 97 (3), 1005–1116. doi: 10.1007/s00253-012-4641-8.
6. Pirog T. P., Konon A. D., Sofilkanich A. P., Iutinskaya G. A. Effect of surface-active substances of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017 and Nocardia vaccinii K-8 on phytopathogenic bacteria. Appl. Biochem. Microbiol. 2013, 49 (4), 360–367.
7. Marchant R., Banat M. I. Biosurfactants: a sustainable replacement for chemical surfactants. Biotechnol. Lett. 2012, 34 (9), 1597–1605.
8. Pidhorskyy V., Iutinska G., Pirog T. Intensification of microbial synthesis technologies. Кyiv: Nauk. dumka. 2010, 327 p. (In Ukrainian).
9. Pirog T. P., Voloshina I. N., Ignatenko S. V., Vildanova-Marcishin R. I. Some peculiarities of the synthesis of surface-active compounds in Rhodococcus erythropolis ЕK-1 grown on hexadecane. Biotekhnolohiia. 2005, V. 6, P. 27–35 (In Russian).
10. Pirog T.P., Antonyuk S. I., Konon A.D., Shevchuk T. A., Parfenyuk S. A. Influence of pH on synthesis of Acinetobacter calcoaceticus IMV B-7241 biosurfactants. Microbiol. J. 2013, 75 (3), 40–48 (In Russian).
11. Colla L. M., Rizzardi J., Pinto M. H., Reinehr C. O., Bertolin T. E., Costa J. A. Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses. Bioresource Technol. 2010, 101 (21), 8308–8314. doi: 10.1016/j.biortech.2010.05.086.
12. Choi M. H., Xu J., Gutierrez M., Yoo T., Cho Y. H., Yoon S. C. Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ??C NMR analysis of the products in wild-type and mutants. J. Biotechnol. 2011, 151 (1), 30–42. doi: 10.1016/j.jbiotec.2010.10.072
13. Sharma D., Singh Saharan B. Simultaneous production of biosurfactants and bacteriocins by probiotic Lactobacillus casei MRTL3. Int. J. Microbiol. 2014. doi: 10.1155/2014/698713.
14. Liang T. W., Wu C. C., Cheng W. T., Chen Y. C., Wang C. L., Wang I. L., Wang S. L. Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Appl. Biochem. Biotechnol. 2014, 172 (2), 933–950.
15. Raza Z. A., Khan M. S., Khalid Z. M. Evaluation of distant carbon sources in biosurfactant production by a gamma ray-induced Pseudomonas putida mutant. Proc. Biochemistry. 2007, 42 (4), 686–692.
16. Pirog T. P., Konon A. D., Beregovaya K. A., Shulyakova M. A. Antiadhesive properties of the surfactants of Acinetobacter calcoaceticus IMB B-7241, Rhodococcus erythropolis IMB Ac-5017, and Nocardia vaccinii IMB B-7405. Microbiology. 2014, 83 (6), 732–739. http://dx.doi.org/10.1134/S0026261714060150
17. Andrews J. M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48 (1) (Suppl.), 5–16. http://dx.doi.org/10.1093/jac/48.suppl_1.5
18. Savary S., Mila A., Willocquet L., Esker P. D., Carisse O., McRoberts N. Risk factors for crop health under global change and agricultural shifts: a framework of analyses using rice in tropical and subtropical Asia as a model. Phytopathology. 2011, 101 (6), 696–709.
http://dx.doi.org/10.1094/PHYTO-07-10-0183
19. Xu X. M., Jeffries P., Pautasso M., Jeger M. J. Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology. 2011, 101 (9), 1024–1031. http://dx.doi.org/10.1094/PHYTO-08-10-0216
20. Gvozdyak R. I., Pasichnik L. A., Yakovleva L. M., Moroz S. M., Litvinchuk O. O., Zhitkevich N. V., Khodos S. F., Butsenko L. M., Dankevich L. P., Grinik I. V., Patyka V. F. Phytopathogenic Bacteria. Bacterial Plant Diseases. Kyiv: OOO NVP Interservis. 2011, 444 p. (In Ukrainian).
21. Krzyzanowska D. M., Potrykus M., Golanowska M., Polonis K., Gwizdek-Wisniewska A., Lojkowska E., Jafra S. Rhizosphere bacteria as potential biocontrol agents against soft rot caused by various Pectobacterium and Dickeya spp. strains. J. Plant. Pathol. 2012, 94 (2), 267 378. doi: 10.4454/JPP.FA.2012.042.
22. Bais H. P., Fall R., Vivanco J. M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant. Physiol. 2004, 134 (1), 307–319. http://dx.doi.org/10.1104/pp.103.028712
23. Etchegaray A., de Castro Bueno C., de Melo I. S., Tsai S. M., Fiore M. F., Silva-Stenico M. E., de Moraes L. A., Teschke O. Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells. Arch. Microbiol. 2008, 190 (6), 611–622. http://dx.doi.org/10.1007/s00203-008-0409-z
24. Singh A. K., Rautela R., Cameotra S. S. Substrate dependent in vitro antifungal activity of Bacillus sp. strain AR2. Microb. Cell Fact. 2014, 13:67. doi: 10.1186/1475-2859-13-67.
25. Tabbene1 O., Kalai1 L., Slimene I. B., Karkouch I., Elkahoui S., Gharbi A., Cosette P., Mangoni M.-L., Jouenne T., Limam F. Anti-Candida effect of bacillomycin D-like lipopeptides from Bacillus subtilis B38. Microbiol. Lett. 2011, 316 (2), 108–114. doi: 10.1111/j.1574-6968.2010.02199.x.
26. Kim P. I., Ryu J., Kim Y. H., Chi Y. T. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 2010, 20 (1), 138–145.
27. Cort?s-S?nchez Ade J., Hern?ndez-S?nchez H., Jaramillo-Flores M. E. Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol. Res. 2013, 168 (1), 22–32. doi: 10.1016/j.micres.2012.07.002.