ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 8, No 5, 2015
https://doi.org/10.15407/biotech8.05.019
Р. 19-26, Bibliography 28, English
Universal Decimal Classification: 577.112:576.385.5
1 Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
2 Faculty of Fundamental Medicine, Lomonosov Moscow State University, Russian Federation
The aim of this study was to design the expression vector encoding fluorescent sensor of hydrogen peroxide HyPer fused with adaptor protein Ruk/CIN85 as well as to check its subcellular distribution and ability to sense hydrogen peroxide. It was demonstrated that in transiently transfected HEK293 and MCF-7 cells Ruk/CIN85-HyPer is concentrated in dot-like vesicular structures of different size while HyPer is diffusely distributed throughout the cell. Using live cell fluorescence microscopy we observed gradual increase in hydrogen peroxide concentration in representative vesicular structures during the time of experiment. Thus, the developed genetic construction encoding the chimeric Ruk/CIN85-HyPer fluorescent protein represents a new tool to study localized H2O2 production in living cells.
Key words: recombinant proteins, adaptor protein Ruk/CIN85, hydrogen peroxide, sensor of hydrogen peroxide HyPer, Ruk/CIN85-HyPer.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2015
References
1. Finkel T. Reactive oxygen species and signal transduction. IUBMB Life. 2001, 52 (1–2), 3–6.
http://dx.doi.org/10.1080/15216540252774694
2. Lambeth J. D. Nox enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 2004, 64 (10), 3580–3585.
http://dx.doi.org/10.1038/nri1312
3. Drobot L. B., Samoylenko A. A., Vorotnikov A. V., Tyurin-Kuzmin P. A., Bazalii A. V., Kietzmann T., Tkachuk V. A., Komisarenko S. V. Reactive oxygen species in signal transduction. Ukr Biokhim Zh. 2013, 85 (6), 208–216.
4. Griendling K. K., Sorescu D., Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000, 86 (5), 494–501.
http://dx.doi.org/10.1161/01.RES.86.5.494
5. Crow J. P. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide. 1997, 1 (2), 145–157.
http://dx.doi.org/10.1006/niox.1996.0113
6. Marchesi E., Rota C., Fann Y. C., Chignell C. F., Mason R. P. Photoreduction of the fluorescent dye 2'-7'-dichlorofluorescein: a spin trapping and direct electron spin resonance study with implications for oxidative stress measurements. Free Radic. Biol. Med. 1999, 26 (1–2), 148–161.
http://dx.doi.org/10.1016/S0891-5849(98)00174-9
7. Rota C., Fann Y. C., Mason R. P. Phenoxyl free radical formation during the oxidation of the fluorescent dye 2',7'-dichlorofluorescein by horseradish peroxidase. Possible consequences for oxidative stress measurements. J. Biol. Chem. 1999, 274 (40), 28161–28168.
http://dx.doi.org/10.1074/jbc.274.40.28161
8. Belousov V. V., Fradkov A. F., Lukyanov K. A., Staroverov D. B., Shakhbazov K. S., Terskikh A. V., Lukyanov S. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Meth. 2006, 3 (4), 281–286.
http://dx.doi.org/10.1038/nmeth866
9. Havrylov S., Rzhepetskyy Y., Malinowska A., Drobot L., Redowicz M. J. Proteins recruited by SH3 domains of Ruk/CIN85 adaptor identified by LC-MS/MS. Proteome Sci. 2009, 16 (7). doi: 10.1186/1477-5956-7-21.
http://dx.doi.org/10.1186/1477-5956-7-21
10. Bazalii A. V., Samoylenko A. A., Petukhov D. M., Rynditch A. V., Redowicz M.-J., Drobot L. B. Interaction between adaptor proteins Ruk/CIN85 and Tks4 in normal in tumor cells of different tissue origins. Biopolimers and Cell. 2014, 30 (1), 33–37.
http://dx.doi.org/10.7124/bc.00087A
11. Gianni D., Diaz B., Taulet N., Fowler B., Courtneidge S. A., Bokoch G. M. Novel p47(phox)-related organizers regulate localized NADPH oxidase 1 (Nox1) activity. Sci Signal. 2009, 2 (88), ra54.
http://dx.doi.org/10.1126/scisignal.2000370
12. Gianni D., DerMardirossian C., Bokoch G. M. Direct interaction between Tks proteins and the N-terminal proline-rich region (PRR) of NoxA1 mediates Nox1-dependent ROS generation. Eur. J. Cell. Biol. 2011, 90 (2–3), 164–171.
http://dx.doi.org/10.1016/j.ejcb.2010.05.007
13. Mayevska O., Shuvayeva H., Igumentseva N., Havrylov S., Barska M., Bobak Ya., Volod’ko N., Baranska J., Buchman V., Drobot L. Expression of adaptor protein Ruk/CIN85 isoforms in cell lines of various tissue origins and human melanoma. Exp. Oncol. 2006, 28 (4), 275–281.
14. Webster G. A., Perkins N. D. Transcriptional cross talk between NF-kappaB and p53. Mol. Cell. Biol. 1999, 19 (5), 3485–3495.
http://dx.doi.org/10.1128/MCB.19.5.3485
15. Tiurin-Kuz'min P. A., Agaronian K. M., Morozov Ya. I., Mishina N. M., Belousov V. V., Vorotnikov A. V. NADPH oxidase controls EGF-induced proliferation via the ERK1/2-independent mechanism. Biofizika. 2010, 55 (6), 1048–1056.
http://dx.doi.org/10.1134/s0006350910060126
16. Ushio-Fukai M. Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid. Redox. Signal. 2009, 11 (6), 1289–1299.
http://dx.doi.org/10.1089/ars.2008.2333
17. Mishina N. M., Tyurin-Kuzmin P. A., Markvicheva K. N., Vorotnikov A. V., Tkachuk V. A., Laketa V., Schultz C., Lukyanov S., Belousov V. V. Does cellular hydrogen peroxide diffuse or act locally? Antiox. Redox Signal. 2011, 14 (1), 1–7.
http://dx.doi.org/10.1089/ars.2010.3539
18. Malinouski M., Zhou Y., Belousov V. V., Hatfield D. L., Gladyshev V. N. Hydrogen Peroxide Probes Directed to Different Cellular Compartments. PLoS ONE. 2011, 6 (1), e14564.
http://dx.doi.org/10.1371/journal.pone.0014564
19. Samoylenko A. A., Byts N. V., Pasichnyk G. V., Kozlova N. V., Bazalii A. V., Gerashchenko D. S., Shandrenko S. G., Vorotnikov A. V., Kietzmann T., Komisarenko S. V., Drobot L. B. Recombinant lentivirus-mediated silencing of adaptor protein Ruk/CIN85 expression influences biological responses of tumor cells. Biotechnol. acta. 2013, 6 (4), 182–189. (In Ukrainian).
20. Samoylenko A., Vynnytska-Myronovska B., Byts N., Kozlova N., Basaraba O., Pasichnyk G., Palyvoda K., Bobak Y., Barska M., Mayevska O., Rzhepetsky Y., Shuvayeva H., Lyzogubov V., Usenko V., Savran V., Volodko N., Buchman V., Kietzmann T., Drobot L. Increased levels of the HER1 adaptor protein Rukl/CIN85 contribute to breast cancer malignancy. Carcinogenesis. 2012, 33 (10), 1976–1984.
http://dx.doi.org/10.1093/carcin/bgs228
21. Havrylov S., Ichioka F., Powell K., Borthwick E. B., Baranska J., Maki M., Buchman V. L. Adaptor Protein Ruk/CIN85 is Associated with a Subset of COPI-Coated Membranes of the Golgi Complex. Traffic. 2008, 9 (5), 798–812.
http://dx.doi.org/10.1111/j.1600-0854.2008.00724.x
22. Nikolaienko O. V., Skrypkina I. Ya., Tsyba L. O., Drobot L. B., Rynditch A. V. ITSN1 and Ruk/CIN85 colocalized to clathrin-coated pits in MCF-7 cells. Biopolymers and Cell. 2009, 25 (5), 424–427.
http://dx.doi.org/10.7124/bc.0007F4
23. Zhang J., Zheng X., Yang X., Liao K. CIN85 associate with endosomal membrane and binds phosphatidic acid. Cell Res. 2009, 19 (6), 733–746.
http://dx.doi.org/10.1038/cr.2009.51
24. Miller F. J., Chu X., Stanic B., Tian X., Sharma R. V., Davisson R. L., Lamb F. S. A differential role for endocytosis in receptor-mediated activation of Nox1. Antioxid. Redox. Signal. 2009, 12 (5), 583–593.
http://dx.doi.org/10.1089/ars.2009.2857
25. Lukyanov K. A., Belousov V. V. Genetically encoded fluorescent redox sensors. Biochim. Biophys. Acta. 2014, 1840 (2), 745–756.
http://dx.doi.org/10.1016/j.bbagen.2013.05.030
26. Li Q., Zhang Y., Marden J. J., Banfi B., Engelhardt J. F. Endosomal NADPH oxidase regulates c-Src activation following hypoxia/reoxygenation injury. Biochem. J. 2008, 411 (3), 531–541.
http://dx.doi.org/10.1042/BJ20071534
27. Ejlerskov P., Christensen D. P., Beyaie D., Burritt J. B., Paclet M. H., Gorlach A., van Deurs B., Vilhardt F. NADPH oxidase is internalized by clathrin-coated pits and localizes to a Rab27A/B GTPase-regulated secretory compartment in activated macrophages. J. Biol. Chem. 2012, 287 (7), 4835–4852.
http://dx.doi.org/10.1074/jbc.M111.293696
28. Dikic I., Giordano S. Negative receptor signalling. Curr. Opin. Cell Biol. 2003, 15 (2), 128–135.
http://dx.doi.org/10.1016/S0955-0674(03)00004-8