ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 8, No 5, 2015
https://doi.org/10.15407/biotech8.05.078
Р. 78-85, Bibliography 21, English
Universal Decimal Classification: 577.151:582.28
EXTRACELLULAR CELLULOLYTIC COMPLEXES PRODUCTION BY MICROSCOPIC FUNGI
D.K. Zabolotny Institute Microbiology and Virology NAS of Ukraine
The aim of this work was to screen and to study the effect of inducers on the synthesis of the cellulolytic enzyme complexes by microscopic fungi. Cellulolytic and xylanolytic activities were determined by reducing sugar with DNS reagent, and β-glucosidase activity by pNPG hydrolysis. The enzyme preparations were obtained by ammonium sulphate precipitation. Among 32 studied strains of microscopic fungi 14 produced cellulo- and xylanolytic enzyme complexes. Fusarium sp. 5 and Fennellia sp. 2806 demonstrated the highest levels of all studied enzyme activities. Enzyme preparations with high endo-, exoglucanase, xylanase and β-glucosidase activities were obtained from these strains. Fusarium sp. 5 and Fennellia sp. 2806 were active producers of cellulase enzyme complexes during growth on natural substrates. It was shown that inductors of cellulolytic enzymes in Fusarium sp. 5 and Fennellia sp. 2806 differed from the ones in Trichoderma reesei.
Key words: microscopic fungi, endoglucanase, exoglucanase, xylanase, β-glucosidase
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2015
References
1. Rabinovich M. L., Melnik M. S., Bolobova A. V. The structure and mechanism of action of cellulolytic enzymes. Biochemistry (Moscow Russ. Fed.). 2002, 67(8), P. 850–871. DOI: 10.1023/A:1019958419032
2. Zhang P.Y.-H., Himmel M. E., Mielenz J. R. Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv. 2006, V. 24, P. 452–481. DOI: 10.1016/j.biotechadv.2006.03.003
3. Dashtban M., Schraft H., Qin W. Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int. J. Biol. Sci. 2009, N 5, P. 578–595. DOI: 10.7150/ijbs.5.578
4. Michelin M., de Lourdes M., Polizeli T. M., Ruzene D. S., Silva D. P., Teixeira J. A. Application of lignocelulosic residues in the production of cellulase and hemicellulases from fungi. Fungal Enzymes. Polizeli M. T. M. and Rai M. (Eds.). CRC Press. 2014, P. 31–64. ISBN 9781466594548
5. Kubicek C. P. Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J. Biotechnol. 2013, 163(2), P. 133–142. DOI: 10.1016/j.jbiotec.2012.05.020
6. Kabel M. A., van der Maarel M. J. E. C., Klip G., Voragen A. G. J., Schols H. A. Standard assays do not predict the efficiency of commercial cellulase preparations towards plant materials. Biotechnol. Bioeng. 2006, 93(1), P. 56–63. DOI: 10.1002/bit.20685
7. Marx I. J., van Wyk N., Smit S., Jacobson D., Viljoen-Bloom M., Volschenk H. Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse. Biotechnol Biofuels. 2013, 6(172). DOI:10.1186/1754-6834-6-172.
8. Kumar R., Wyman C. E. Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour. Technol. 2009, V.100, P. 4203–4213. DOI:10.1016/j.biortech.2008.11.057
9. Methods of experimental mycology. V.I. Bilai (ed.), Кiev: Naukova dumka. 1982. 550 p. (in Russian).
10. Zhang Y. H. P., Hong J., Ye X. Cellulase Assays. Biofuels: Methods and Protocols. Methods in Molecular Biology. J.R. Mielenz (ed.). Humana Press. 2009, V. 581, Р. 213–231. DOI 10.1007/978-1-60761-214-8_14
11. Lee J. M., Heitmann J. A., Pawlak J. J. Rheology of carboxymethyl cellulose solutions treated with cellulases. BioResources. 2007, 2(1), P. 20–33. (http://ojs.cnr.ncsu.edu/index.php/BioRes/article/viewFile/BioRes_02_1_020_033_Rheol_CMC_Solutions_Cellulases/30)
12. Ghose T. K. Measurement of cellulase activities. Pure Appl. Chem. 1987, 59(2), P. 257–268. DOI: 10.1351/pac198759020257
13. Miller G. I. Use of dinitrosalycilic acid reagent for determination of reducing sugars. Anal. Chem. 1959, 31(3), P. 426–428. DOI: 10.1021/ac60147a030
14. Bradford M. M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, V. 72, P. 248–254. DOI: 10.1006/abio.1976.9999
15. Parry N. J., Beever D. E., Owen E., Vandenberqhe I., Van Beeumen J., Brat M. K. Biochemical characterization and mechanism of action of a thermostable beta-glucosidase purified from Thermoascus aurantiacus. Biochem. J. 2001, 353(1), P. 117–127. DOI: 10.1042/bj3530117
16. Chepchak T. P., Kurchenko I. N., Yurieva E. M. Biodegradation of plant agricultural waste by Fusarium oxysporum. Mikrobiol. Zhurnal. 2014, 76(4), С. 41–46. (In Russian). (http://nbuv.gov.ua/j-pdf/MicroBiol_2014_76_4_8.pdf)
17. Peterson R., Nevalainen H. Trichoderma reesei RUT-C30 – thirty years of strain improvement. Microbiology (Reading, U. K.). 2012, 158(1), P. 58–68. DOI: 10.1099/mic.0.054031-0
18. Martins L. F., Kolling D., Camassola M., Dillon A. J. P., Ramos L. P. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour. Technol. 2008, 99(5), P. 1417–1424. DOI:10.1016/j.biortech.2007.01.060
19. Gusakov A. V., Kondratyeva E. G., Sinitsyn A. P. Comparison of two methods for assaying reducing sugars in the determination of carbohydrase activities. Int. J. Analyt. Chem. 2011, V. 2011, P. 1–4. DOI: 10.1155/2011/283658
20. Liao H., Li S., Wei Z., Shen Q., Xu Y. Insights into high-efficiency lignocellulolytic enzyme production by Penicillium oxalicum GZ-2 induced by a complex substrate. Biotechnol Biofuels. 2014, 7(1), 162. DOI: 10.1186/s13068-014-0162-2.
21. Lichius A., Seidl-Seiboth V., Seiboth B., Kubicek C. P. Nucleo-cytoplasmic shuttling dynamics of the transcriptional regulators Xyr1 and Cre1 under conditions of cellulase and xylanase gene expression in Trichoderma reesei. Mol. Microbiol. 2014, 94(5), P. 1162–1178. DOI: 10.1111/mmi.12824