ISSN 2410-776X (Online),
ISSN 2410-7751 (Print)
"Biotechnologia Acta" v. 8, no 1, 2015;
https://doi.org/10.15407/biotech8.01.082
Р. 82-87, Bibliography 43, English
Universal Decimal classification: 579.222: 547.979.8
BIOTECHNOLOGICAL CONDITIONS OF VALVE PROSTHESES CREATING BY TISSUE ENGINEERING METHOD
A. G. Popandopulo1, M. V. Savchuk1, D. L. Yudickiy2
1SI « Husak Institute of Urgent and Recovery Surgery», Donetsk, Ukraine
2Gorky Donetsk National Medical University, Donetsk, Ukraine
Nowadays, definitive treatment for the end-stage organ failure is transplantation. Tissue engineering is an up to date solution to create the effective substitute of the defective organ. It involves the reconstitution of viable tissue with the use of autologous cells grown on connective tissue matrix, which has been acellularized before. Basis for the prothesis should be morphologically and physically nonmodified, so in case of making vessel-valvular biological prosthesises the decellularized extracellular matrix is the best variant. The xenogeneic extracellular matrix is economically and ethically more useful. The possibility of preservation of the morphological and chemical properties of matrix structure initiates the process of programmed cell death. In contrast to necrosis, which is a form of traumatic cell death that results from acute cellular injury, apoptosis doesn’t cause the tissue damages. One of the ways of realizing the apoptosis is the usage of EDTA — chelate, which binds the Ca2+ ions.
Key words: tissue engineering, extracellular matrix, decellularization, apoptosis, chelate.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2015
References
1. Aleksieva G., Hollweck T., Thierfelder N., Haas U., Koenig F., Fano C., Dauner M., Wintermantel E., Reichart B., Schmitz C., Akra B. Use of a special bioreactor for the cultivation of a new flexible polyurethane scaffold for aortic valve tissue engineering. BioMedical Engin. OnLine. 2012, V. 11, P. 92–103.
2. Rippel R. A., Ghanbari H., Seifalian A. M. Tissue-engineered heart valve: future of cardiac surgery. World J. Surg. 2012, 36 (7), 1581–1591.
http://dx.doi.org/10.1007/s00268-012-1535-y
3. Vesely I. Heart Valve Tissue Engineering. Circul. Res. 2005, V. 97, P. 743–755.
http://dx.doi.org/10.1161/01.RES.0000185326.04010.9f
4. Kasimir M., Rieder E., Seebacher G., Nigisch A., Dekan B., Wolner E., Weigel G., Simon P. Decellularisation does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. J. Heart Valve Dis. 2006, 15 (2), 278–286.
5. Dunn D. A., Hodge A. J., Lipke E. A. Biomimetic materials design for cardiac tissue regeneration. Wiley Interdis. Rev. Nanomed. Nanobiotechnol. 2014, 6 (1), 15–39.
http://dx.doi.org/10.1002/wnan.1241
6. Zhou J., Hu S., Ding J., Xu J., Shi J., Dong N. Tissue engineering of heart valves: PEGylation of decellularized porcine aortic valve as a scaffold for in vitro recellularization. BioMed. Eng. Online. 2013, V. 12, P. 87.
http://dx.doi.org/10.1186/1475-925X-12-87
7. Dainese L., Biglioli P. Human or animal homograft: could they have a future as a biological scaffold for engineered heart valves? J. Cardiovasc. Surg. (Torino). 2010, 51 (3), 449–456.
8. Macchiarini P., Jungebluth P., Go T., Asnaghi M. A., Rees L. E., Cogan T. A., Dodson A., Martorell J., Bellini S., Parnigotto P. P., Dickinson S. C., Hollander A. P., Mantero S., Conconi M. T., Birchall M. A. Clinical transplantation of a tissue-engineered airway. Lancet. 2008, 13 (372), 2023–2030.
http://dx.doi.org/10.1016/S0140-6736(08)61598-6
9. Lichtenberg A., Cebotari S., Tudorache I., Hilfiker A., Haverich A. Biological scaffolds for heart valve tissue engineering. Meth. Mol. Med. 2007, V. 140, P. 309–317.
http://dx.doi.org/10.1007/978-1-59745-443-8_17
10. Lam M. T., Wu J. C. Biomaterial applications in cardiovascular tissue repair and regeneration. Exp. Rev. Cardiovasc. Ther. 2012, 10 (8), 1039–1049.
http://dx.doi.org/10.1586/erc.12.99
11. Kalfa D., Bacha E. New technologies for surgery of the congenital cardiac defect. Rambam Maimonides Med. J. 2013, 4 (3), 19–33.
http://dx.doi.org/10.5041/RMMJ.10119
12. Klopsch C., Steinhoff G. Tissue-engineered devices in cardiovascular surgery. Eur. Surg. Res. 2012, 49 (1), 44–52.
http://dx.doi.org/10.1159/000339606
13. Webera B., Emmerta M. Y., Hoerstrupa S. P. Stem cells for heart valve regeneration. Swiss. Med. Wkly. 2012, V. 142, P. 136–147.
http://dx.doi.org/10.4414/smw.2012.13622
14. Gandaglia A., Bagno A., Naso F., Spina M., Gerosa G. Cells, scaffolds and bioreactors for tissue-engineered heart valves: a journey from basic concepts to contemporary developmental innovations. Eur. J. Cardiothorac. Surg. 2011, V. 39, P. 523–531.
http://dx.doi.org/10.1016/j.ejcts.2010.07.030
15. Weber B., Dijkman P. E., Scherman J., Sanders B., Emmert M. Y., Gr?nenfelder J., Verbeek R., Bracher M., Black M., Franz T., Kortsmit J., Modregger P., Peter S., Stampanoni M., Robert J., Kehl D., van Doeselaar M., Schweiger M., Brokopp C. E., W?lchli T., Falk V., Zilla P., Driessen-Mol A., Baaijens F. P., Hoerstrup S. P. Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials. 2013, 34 (30), 7269–7280.
http://dx.doi.org/10.1016/j.biomaterials.2013.04.059
16. Mendoza-Novelo B., Avila E. E., Cauich-Rodr?guez J. V., Jorge-Herrero E., Rojo F. J., Guinea G. V., Mata-Mata J. L. Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content. Acta biomater. 2011, 7 (3), 1241–1248.
http://dx.doi.org/10.1016/j.actbio.2010.11.017
17. Somers P., De Somer F., Cornelissen M., Thierens H., Van Nooten G. Decellularization of heart valve matrices: search for the ideal balance. Artif. Cells Blood Substit. Immobil. Biotechnol. 2012, 40 (1–2), 151–162.
http://dx.doi.org/10.3109/10731199.2011.637925
18. Bauer A., Postrach J., Thormann M., Blanck S., Faber C., Wintersperger B., Michel S., Abicht J. M., Christ F., Schmitz C., Schmoeckel M., Reichart B., Brenner P. First experience with heterotopic thoracic pig-to-baboon cardiac xenotransplantation. Xenotransplantation. 2010, 17 (3), 243–249.
http://dx.doi.org/10.1111/j.1399-3089.2010.00587.x
19. Jarilin A. A., Ignateva G. A., Gushhin I. S. Lihtenshtejn A. V., Shapot V. S., Pshennikova M. G., Reshetnjak V. K., Kukushkin M. L., Makarov V. A. Actual problems of pathophysiology. Moroz B. B. (Ed.). Moskva: Medicina. 2001, P. 13–48. (In Russian).
20. Schmidt D., Stock U. A., Hoerstrup S. P. Tissue engineering of heart valves using decellularized xenogeneic or polymeric starter matrices. Phil. Trans. R. Soc. B. 2007, V. 362, P. 1505–1512.
http://dx.doi.org/10.1098/rstb.2007.2131
21. Dohmen P. M. Tissue engineered aortic valve. HSR Proc. Intensive Care Cardiovasc. Anesth. 2012, 4 (2), 89–93.
22. Tudorache I., Cebotari S., Sturz G., Kirsch L., Hurschler C., Hilfiker A., Haverich A., Lichtenberg A. Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. J. Heart Valve Dis. 2007, 16 (5), 567–573.
23. Zhou J., Fritze O., Schleicher M., Wendel H. P., Schenke-Layland K., Harasztosi C., Hu S., Stock U. A. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials. 2010, 31 (9), 2549–2554.
http://dx.doi.org/10.1016/j.biomaterials.2009.11.088
24. Schmidt C. E. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials. 2000, 21 (22), 2215–2231.
http://dx.doi.org/10.1016/S0142-9612(00)00148-4
25. Baraki H., Tudorache I., Braun M., H?ffler K., G?rler A., Lichtenberg A., Bara C., Calistru A., Brandes G., Hewicker-Trautwein M., Hilfiker A., Haverich A., Cebotari S. Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials. 2009, 30 (31), 6240–6426.
http://dx.doi.org/10.1016/j.biomaterials.2009.07.068
26. Schmidt D., Hoerstrup S. P. Tissue engineered heart valves based on human cells. Swiss. Med. Wkly. 2007, 137 (155 Suppl.), 80S–85S.
27. Fil'chenkov O. O. Stojka R. S. Apoptosis and cancer: from the theory to the practice. Ternopil: TDMU. 2006, P. 10–12. (In Ukrainian).
28. Rosanova I., Michenko B., Zaitsev V. The effect of cells on biomaterials calcification: experiments with diffusion chamber. J. Biomed. Mater. Res. 1991, V. 25, P. 277–280.
http://dx.doi.org/10.1002/jbm.820250213
29. Shirokova A. V. Apoptosis. Signaling pathways and changes in ion and water balance of the cell. Citologiia. 2007, 49 (5), 385–394. (In Russian).
30. Manskih V. N. Morphological methods of verification and quantification of apoptosis. Bjulleten' sibirskoj mediciny. 2004, N 1, P. 63–70. (In Russian).
31. Hannun Y. A., Obeid L. M. Ceramide and the eukaryotic stress response. Biochem. Soc. Trans. 1997, 25 (4), 1171–1175.
32. Weedon D., Searle J., Kerr J. F. Apoptosis. Its nature and implications for dermatopathology. Am. J. Dermatopathol. 1979, 1 (2), 133–144.
http://dx.doi.org/10.1097/00000372-197900120-00003
33. Belushkina N. N., Severin S. E. Molecular basis of the apoptosis’s pathology. Arh. Path. 2001, 63 (1), 51–59. (In Russian).
34. Skibo Ju. V., Abramova Z. I. Methods of study of the programmed cell death. Kazan': FGAOU VPO KFU. 2011. 61 с. (In Russian).
35. Bokerija L. A., Muratov R. M., Skopin I. I., Britikov D. V., Akatov V. I. Cryopreserved allografts in reconstructive surgery of the aortic valve defects. Moskva: NCSSH im. A. N. Bakuleva RAMN. 2007, 282 p. (In Russian).
36. Dohmen P. M. Clinical results of implanted tissue engineered heart valves. HSR Proc. Intensive Care Cardiovasc. Anesth. 2012, 4 (4), 225–231.
37. Robinson K. A., Li J., Mathison M., Redkar A., Cui J., Chronos N. A., Matheny R. G., Badylak S. F. Extracellular matrix scaffold for cardiac repair. Circulation. 2005, 112 (9), 135–143.
38. Zhai W., Zhang H., Wu C., Zhang J., Sun X., Zhang H., Zhu Z., Chang J. Crosslinking of saphenous vein ECM by procyanidins for small diameter blood vessel replacement. J. Biomed. Mater. Res. B. Appl. Biomater. 2014, 45 (1), 102–115.
http://dx.doi.org/10.1002/jbm.b.33102
39. Badylak S. F., Weiss D. J., Caplan A., Macchiarini P. Engineered whole organs and complex tissues. The Lancet. 2012, 379 (9819), 943–952.
http://dx.doi.org/10.1016/S0140-6736(12)60073-7
40. Steinhoff G., Stock U., Karim N. Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits. Circulation. 2000, 102 (III), III-50–III-55.
41. Yannas I. V., Tzeranis D. S., Harley B. A. Biologically active collagen-based scaffolds: advances in processing and characterization. Phil. Trans. R. Soc. A. 2010, V. 368, P. 2123–2139.
http://dx.doi.org/10.1098/rsta.2010.0015
42. Mikhailova I., Sandomirsky B., Gorlenko A. Effect of low temperatures and ionizing irradiation upon physical-mechanical properties and connective – tissue structures of porcine fibrous pericardium and aortic volve leaflets. Periodic. Biologorum. 2014, 116 (1), 105–114.
43. Yacoub M. H., Takkenberg J. J. Will heart valve tissue engineering change the world? Nat. Clin. Pract. Cardiovasc. Med. 2005, 2 (2), 60–61
http://dx.doi.org/10.1038/ncpcardio0112