ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 6, 2014
https://doi.org/10.15407/biotech7.06.029
Р. 29-39, Bibliography 32, English
Universal Decimal classification: 577.322, 577.152.271
EFFECT OF INHIBITORS OF PROTEIN KINASE CK2 ON THE ACTIVITY ITS CATALYTIC SUBUNITS СКα AND СК2α′
O. V. Ostrynska, O. P. Kukharenko, V. G. Bdzhola, S. M. Yarmoluk
Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
The effect of protein kinase CK2 inhibitors (with IC50 from 0.004 μM to 0.7 μM) from different chemical classes on the activity of СК2α and СК2α′ recombinant proteins has been studied. Biochemical tests shown that isozymes had different sensitivity toward the same compounds. The most isoform-selective inhibitor was 4′-hydroxyflavone derivative (FLC26) with IC50 value 0.020 μM (CK2α) and 0.003 μM (CK2α′). To explain the difference between influences of FLC26 on the activities of two CK2 catalytic subunits their complexes with ATP-binding site of CK2α and CK2α′ were analyzed using molecular modeling techniques. The data obtained by molecular dynamics simulation (10 ns) has not provided a clear explanation of the difference between the inhibitory potency of the compound FLC26 towards the CK2 catalytic subunits. Thus, the reasons underlying the different activities of the same inhibitor on CKα and CKα′ require further investigations. An effective approach for this purpose would be X-ray analysis of complexes "compound FLC26- CKα/CKα′".
Key words: catalytic subunits of protein kinase CK2, docking, molecular dynamics simulation.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Volynets G. P., Golub A. G., Bdzhola V. G., Yarmoluk S. M. The role of protein kinase CK2 in the regulation of oncogenesis, apoptosis and cellular stress response. Ukranian Bioorganic Acta. 2007, N 2, P. 25–32. (In Ukrainian).
2. Guerra B., Issinger O. G. Protein kinase CK2 in human diseases. Curr. Med. Chem. 2008, 15 (19), 1870–1876.
doi: 10.2174/092986708785132933.
3. Litchfield D. W., Bosc D. G., Canton D. A., Saulnier R. B., Vilk G., Zhang C. Functional specialization of CK2 isoforms and characterization of isoformspecific binding partners. Mol. Cell. Biochem. 2001, N 227, P. 21–29.
doi: 10.1023/A:1013188101465.
4. Antonelli M., Daniotti J. L., Rojo D., Allende C. C. Allende J. E. Cloning, expression and properties of the alpha’ subunit of casein kinase 2 from zebrafish (Danio rerio). Eur. J. Biochem. 1996, 241 (1), 272–279.
doi: 10.1111/j.1432-1033.1996.0272t.x.
5. Cozza G., Bortolato A., Moro S. How druggable is protein kinase CK2? Med. Res. Rev. 2010, 30 (3), 419–462.
doi: 10.1002/med.20164.
6. Olsen B. B., Rasmussen T., Niefind K., Issinger O. G. Biochemical characterization of CK2 alpha and alpha’ paralogues and their derived holoenzymes: evidence for the existence of a heterotrimeric CK2alpha’-holoenzyme forming trimeric complexes. Mol. Cell. Biochem. 2008, 316 (1–2), 37–47.
doi: 10.1007/s11010-008-9824-3.
7. Bodenbach L., Fauss J., Robitzki A., Krehan A., Lorenz P., Lozeman F. J., Pyerin W. Recombinant human casein kinase II. A study with the complete set of subunits (alpha, alpha’ and beta), site-directed autophosphorylation mutants and a bicistronically expressed holoenzyme. Eur. J. Biochem. 1994, V. 220, P. 263–273. doi: 10.1111/j.1432–1033.1994.tb18622.x.
8. Guerra B., Siemer S., Boldyreff B., Issinger O.-G. Protein kinase CK2: evidence for a protein kinase CK2 beta subunit fraction, devoid of the catalytic CK2 alpha subunit, in mouse brain and testicles. FEBS Lett. 1999, V. 462, P. 353–357. doi: 10.1016/S0014-5793(99)01553-7.
9. Maridor G., Park W., Krek W., Nigg E. A. Casein kinase II: cDNA sequences, developmental expression, and tissue distribution of mRNAs for alpha, alpha’ and beta subunits of the chicken enzyme. J. Biol. Chem. 1991, V. 266, P. 2362–2368.
10. Glover C. V. On the physiological role of casein kinase II in Saccharomyces cerevisiae. Prog. Nucleic. Acid. Res. Mol. Biol. 1998, V. 59, P. 95–133.
doi: 10.1016/S0079-6603(08) 61030-2.
11. Litchfield D. W. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J. 2003, V. 369, P. 1–15.
doi: 10.1042/BJ20021469.
12. Ostrynska O. V., Balanda A. O., Bdzhola V. G., Kotey I. M., Kukharenko O. P., Yarmoluk S. M. Low-molecular organic ATP-competitive inhibitors of serine/threonine protein kinase CK2 on the basis of 4-amino-thieno[2,3-d]pyrimidine heterocycle. UA. Patent 86041, December 10, 2013.
13. Ostrynska O. V., Bdzhola V. G., Kukharenko O. P., Yarmoluk S. M. Search of new low-molecular inhibitors of protein kinase CK2 among 3,4,5,6-tetrahydro-thiopyrano[2,3-d]thiazole derivatives. Ukranian Bioorganic Acta. 2012, N 2, P. 25–29. (In Ukrainian).
14. Golub A. G., Yakovenko O. Y., Bdzhola V. G., Sapelkin V. M., Zien P., Yarmoluk S. M. Evaluation of 3-carboxy-4(1H)-quinolones as inhibitors of human protein kinase CK2. Mol. Cell Biochem. J. Med. Chem. 2006, 49 (22), 6443–6450.
doi: 10.1021/jm050048t.
15. Golub A. G., Yakovenko O. Y., Prykhodko A. O., Lukashov S. S., Bdzhola V. G., Yarmoluk S. M. Evaluation of 4,5,6,7-tetrahalogeno-1H-isoindole-1,3(2H)-diones as inhibitors of human protein kinase CK2. Mol. Cell Biochem. Biochim. Biophys. Acta. 2008, 1784 (1), 143–149.
doi: 10.1016/j.bbapap.2007.10.009.
16. Golub A. G., Bdzhola V. G., Ostrynska O. V., Kyshenia I. V., Sapelkin V. M., Prykhodko A. O., Kukharenko O. P., Yarmoluk S. M. Discovery and characterization of synthetic 4?-hydroxyflavones — New CK2 inhibitors from flavone family. Bioorg. Med. Chem. 2013, V. 21, P. 6681–6689.
doi: 10.1016/j.bmc.2013.08.013.
17. Golub A. G., Bdzhola V. G., Kyshenia Y. V., Sapelkin V. M., Prykhodko A. O., Kukharenko O. P., Kotey I. M., Ostrynska O. V., Yarmoluk S. M. Structure-based discovery of novel flavonol inhibitors of human protein kinase CK2. Mol. Cell Biochem. 2011, 256 (1–2), 107–115. doi: 10.1007/s11010-011-0945-8.
18. Golub A. G., Bdzhola V. G., Briukhovetska N. V., Balanda A. O., Kukharenko O. P., Kotey I. M., Ostrynska O. V., Yarmoluk S. M. Synthesis and biological evaluation of substituted (thieno[2,3-d]pyrimidin-4-ylthio)carboxylic acids as inhibitors of human protein kinase CK2. Eur. J. Med. Chem. 2011, 46 (3), 870–876.
doi: 10.1016/j.ejmech.2010.12.025.
19. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res. 1979, 7 (6), 1513–1523.
doi: 10.1093/nar/7.6.1513.
20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227 (5259), 680–685.
doi:10.1038/227680a0.
21. Bradford M. M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72 (1–2), 248–254.
http://dx.doi.org/10.1016/0003-2697(76)90527-3
22. Shoichet B. K., Stroud R. M., Santi D. V., Kuntz I. D., Perry K. M. Structure-based discovery of inhibitors of thymidylate synthase. Science. 1993, N 259, P. 1445–1450.
doi: 10.1126/science.8451640.
23. Bodian D. L., Yamasaki R. B., Buswell R. L., Stearns J. F., White J. M., Kuntz I. D. Inhibition of the fusion-inducing conformational change of influenza hemagglutinin by benzoquinones and hydroquinones. Biochemistry. 1993, N 32, P. 2967–2978.
doi: 10.1021/bi00063a007.
24. Ring C. S., Sun E., McKerrow J. H., Lee G. K., Rosenthal P. J., Kuntz I. D., Cohen F. E. Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc. Natl. Acad. Sci. 1993, N 90, P. 3583–3587.
doi: 10.1073/pnas.90.8.3583
25. Ewing T. J., Makino S., Skillman A. G., Kuntz I. D. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des. 2001, N 15, P. 411–428.
doi: 10.1023/A:1011115820450.
26. Oostenbrink C., Villa A., Mark A. E., Van Gunsteren W. F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 2004, 23 (13), 1656–1676.
doi: 10.1002/jcc.20090.
27. Hockney R. W., Goel S. P., Eastwood J. Quiet high resolutioncomputer models of a plasma. J. Comput. Phys. 1974, 14 (2), 148–158.
doi: 10.1016/0021-9991(74)90010-2.
28. Darden T., Perera L., Li L., Pedersen L. New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure. 1999, 7 (3), 55–60.
http://dx.doi.org/10.1016/S0969-2126(99)80033-1
29. Sarno S., Vaglio P., Meggio F., Issinger O. G., Pinna L. A. Protein kinase CK2 mutants defective in substrate recognition. Purification and kinetic analysis. J. Biol. Chem. 1996, 271 (18), 10595–10601.
doi: 10.1074/jbc.271.18.10595.30. Grasselli E., Tomati V., Bernasconi M. V., Nicolini C., Vergani L. C-Terminal Region of Protein Kinase CK2 alpha: How the Structure Can Affect Function and Stability of the Catalytic Subunit. J. Cell. Biochem. 2004, 92 (2), 270–284.
doi: 10.1002/jcb.20049.
31. Nakaniwa T., Kinoshita T., Sekiguchi Y., Tada T., Nakanishi I., Kitaura K., Suzuki Y., Ohno H., Hirasawa A., Tsujimoto G. Structure of human protein kinase CK2?2 with a potent indazole-derivative inhibitor. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 2009, 65 (2), 75–79.
doi: 10.1107/S1744309108043194.
32. Backes A. C., Zech B., Felber B., Klebl B., M?ller G. Small-molecule inhibitors binding to protein kinases. Part I: exceptions from the traditional pharmacophore approach of type I inhibition. Expert Opin. Drug Discov. 2008, 3 (12), 1409–1425.
doi: 10.1517/17460440802579975.