ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 7, No 6, 2014
https://doi.org/10.15407/biotech7.06.083
Р. 83-91, Bibliography 59, Ukrainian
Universal Decimal classification: 615.272.6
AMINO ACIDS APPLICATION TO CREATE OF NANOSTRUCTURES
I. S. Chekman1, N. A. Gorchakova1, H. O. Sirova2, O. O. Kazakova3, T. I. Nagorna1, V. F. Shatornaya4
1Department of Pharmacology and Clinical pharmacology of Bohomolets National Medical University, Kyiv, Ukraine
2Department of Medical and Bioorganic Chemistry of Kharkiv National Medical University, Ukraine
3Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine, Kyiv
4Biology Department Dnepropetrovsk Medical Academy, Ukraine
Review is devoted to the amino acids that could be used for nanostructures creation. The investigation of corresponding properties of amino acids is essential for their role definition in creation of nanomedicines. However, amino acid studying as components of nanostructures is insufficient. Study of nanoparticles for medicines creation was initiated by the development of nanotechnology. Amino acids in complexes with the nanoparticles of organic and inorganic nature play an important role for medicines targeting in pathological process. They could reduce toxicity of the nanomaterials used in nanomedicine and are used for creation of biosensors, lab-on-chip and therefore they are a promising material for synthesis of new nanodrugs and diagnostic tools.
Key words: amino acids, nanomedicine.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008
References
1. Xidos J. D., Li J., Zhu T., Hawkins G. D., Thompson J. D., Chuang Y.Y., Fast P. L., Liotard D. A., Rinaldi D., Cramer C. J., Truhlar D. G. GAMESOL–version 3.1, University of Minnesota, Minneapolis, 2002, based on the General Atomic and Molecular Electronic Structure System (GAMESS) as described in Ref. 4. J. Comp. Chem. 1993, N 14, P. 1347.
2. Chekman I. S. Nanoscience: prospects of scientific investigations. Nauka ta innovatsiia. 2009, 5(3), 89–93. (In Ukrainian).
3. Avetisova G. Ye., Melkonyan L. H., Chakhalyan A. Kh., Keleshyan S. Gh., Saghyan A. S. Development of new highly active BreviBacterium flavum’ Lalanine producers strains and comparative characterization of their alaninsynthesizing activity. Vavilovskii zh. genetiki i selektsii. 2013, 17 3), 430–434. (In Russian).
4. Guidelli E. J., Ramos A. P., Zaniquelli M. E., Nicolucci P., Baffa O. Synthesis and characterization of gold/alanine nanocomposites with potential properties for medical application as radiation sensors. ACS Appl. Mater. Interfaces. 2012, 4(11), 5844–5851.
doi: 10.1021/am3014899.
5. Wu L., Lu X., Zhang H., Chen J. Amino acid ionic liquid modified mesoporous carbon: a tailormade nanostructure biosensing platform. Chem. Sus. Chem. 2012, 5(10), 1918–1925.
doi: 10.1002/cssc.201200274.
6. Chernyshova O. S. The binding of ?phenyl?alanine by sodium dodecylsulphate’ nanodimensional aggregates. Biulleten Kharkovskogo gos. unta. Chim. nauki. 2011, N 976. 20(43), 187–191. (In Ukrainian).
7. Golovnev N. N., Vasiliev A. D., Molokeev M. S., Novikova G. V., Sergeeva M. V. Synthesis of the metals with betaalanine complex compounds. Biulleten Kharkovskogo gos. unta. 2004, N 2, P. 14–20. (In Russian).
8. Alabanza A. M., Pozharski E., Aslan K. Rapid Crystallization of LAlanine on engineered surfaces using metalassisted and microwaveaccelerated evaporative crystallization. Cryst. Growth. Des. 2012, 12(1), 346–353.
http://dx.doi.org/10.1021/cg2011502
9. Bratzel G., Buehler M. J. Sequencestructure correlations in silk: PolyAla repeat of N. clavipes MaSp1 is naturally optimized at a critical length scale. J. Mech. Behav. Biomed. Mater. 2012, V. 7, P. 30–40. doi: 10.1016/j.jmbbm.2011.07.012.
10. Joksimovic R., Altin B., Mehta S. K., Gradzielski M. Synthesis of silica nanoparticles covered with silver beads. J. Nanosci. Nanotechnol. 2013, 13(10), 6773–6781.
http://dx.doi.org/10.1166/jnn.2013.7750
11. Adeyemi O. S., Whiteley C. G. Interaction of metal nanoparticles with recombinant arginine kinase from Trypanosoma brucei: Thermodynamic and spectrofluorimetric evaluation. Biochim. Biophys. Acta. 2013, 1840(1), 701–706.
doi: 10.1016/j.bbagen.2013.10.038.
12. Chen Y., Yang L., Huang S., Li Z., Zhang L., He J., Xu Z., Liu L., Cao Y., Sun L. Delivery system for DNAzymes using argininemodified hydroxyapatite nanoparticles for therapeutic application in a nasopharyngeal carcinoma model. Int. J. Nanomedicine. 2013, V. 8, P. 3107–3718.
doi: 10.2147/IJN.S48321.
13. Bai C. Z., Choi S., Nam K., An S., Park J. S. Arginine modified PAMAM dendrimer for interferon beta gene delivery to malignant glioma. Int. J. Pharm. 2013, 445(1–2), 79–87.
doi: 10.1016/j.ijpharm.2013.01.057.
14. Kondratyeva M. S., Kabanov A. V., Komarov V. M. Modeling of helix formation in peptides containing aspartic and glutamic residues. Kompiuternyie issledovaniia i modelirovaniie. 2010, 2(1), 83–90. (In Russian).
15. Wang X., Wu G., Lu C., Zhao W., Wang Y., Fan Y., Gao H., Ma J. A novel delivery system of doxorubicin with high load and pHresponsive release from the nanoparticles of poly (?, ?aspartic acid) derivative. Eur. J. Pharm. Sci. 2012, 47(1), 256–264.
doi: 10.1016/j.ejps.2012.04.007.
16. Zeng J., Huang H., Liu S., Xu H., Huang J., Yu J. Hollow nanosphere fabricated from ?cyclodextringrafted ?, ? poly(aspartic acid) as the carrier of camptothecin. Colloids Surf. B. Biointerfaces. 2013, N 105, P. 120–127.
doi: 10.1016/j.colsurfb.2012.12.024.
17. Benezra M., PenateMedina O., Zanzonico P. B., Schaer D., Ow H., Burns A., DeStanchina E., Longo V., Herz E., Iyer S., Wolchok J., Larson S.M., Wiesner U., Bradbury M. S. Multimodal silica nanoparticles are effective cancertargeted probes in a model of human melanoma. J. Clin. Invest. 2011, 121(7), 2768–2780.
doi: 10.1172/JCI45600.
18. Hassan H. H., ElBanna S. G., Elhusseiny A. F., Mansour elS. M. Antioxidant activity of new aramide nanoparticles containing redoxactive Nphthaloyl valine moieties in the hepatic cytochrome P450 system in male rats. Molecules. 2012, 17(7), 8255–8275.
doi: 10.3390/molecules17078255.
19. Krasylenko O. P., Pedachenko Yu. Ye. The treatment of neurogenic intermittent claudication syndrome caused by stenosis of spinal canal’ lumbar region. Mizhnarodnyi nevrol. zh. 2011, 3(41), 21–26. (In Ukrainian).
20. VeigadaCunha M., Hadi F., Balligand T., Stroobant V., van Schaftingen E. Molecular identification of hydroxylysine kinase and of ammoniophospholyases acting on 5phosphohydroxyLlysine and phosphoethanolamine. J. Biol. Chem. 2012, 287(10), 7246–7255. doi: 10.1074/jbc.M111.323485.
21. Haiko H. V., Magomedov A. M., Kalashnikov A. V., Kuzub T. A. Features of biochemical changes in the blood serum depending on the form of progression idiopathic coxarthrosis. Zh. “Trauma”. 2012, 13(2), 64–67. (In Russian).
22. Trivedi R., Redente E. F., Thakur A., Riches D. W., Kompella U. B. Local delivery of biodegradable pirfenidone nanoparticles ameliorates bleomycininduced pulmonary fibrosis in mice. Nanotechnology. 2012, 23(50), 505101.
doi: 10.1088/09574484/23/50/505101.
23. Zobnina V.G., Kosevich M.V., Boryak O.A., Chagovets V.V. Intermolecular interaction of polyethers oligomers with amino acid histidine. Bulletin of SevNTU. 2011, N 113, P. 88–93.
24. Liu Y. R., Hu R., Liu T., Zhang X. B., Tan W., Shen G. L., Yu R. Q. Labelfree dsDNACu NPsbased fluorescent probe for highly sensitive detection of Lhistidine. Talanta. 2013, N 107, P. 402–407.
doi: 10.1016/ j.talanta.2013.01.038.
25. Mirolo L., Schmidt T., Eckhardt S., Meuwly M., Fromm K. M. pHdependent coordination of Ag(I) ions by histidine: experiment, theory, and a model for SilE. Chemistry. 2013, 19(5), 1754–1761.
doi: 10.1002/chem.201201844.
26. Soni S. K., Selvakannan P. R., Bhargava S. K., Bansal V. Selfassembled histidine acid phosphatase nanocapsules in ionic liquid [BMIM][BF4] as functional templates for hollow metal nanoparticles. Langmuir. 2012, 28(28), 10389–10397.
doi: 10.1021/la3014128.
27. Wu J. L., Liu C. G., Wang X. L., Huang Z. H. Preparation and characterization of nanoparticles based on histidinehyaluronic acid conjugates as doxorubicin carriers. J. Mater. Sci. Mater. Med. 2012, 23(8), 1921–1929.
doi: 10.1007/s1085601246658.
28. Thomas J. J., Rekha M. R., Sharma C. P. Unraveling the intracellular efficacy of dextranhistidine polycation as an efficient nonviral gene delivery system. Mol. Pharm. 2012, 9(1), 121–134.
doi: 10.1021/mp200485b.
29. Gu J., Wang X., Jiang X., Chen Y., Chen L., Fang X., Sha X. Selfassembled carboxymethyl poly (Lhistidine) coated poly (?amino ester)/DNA complexes for gene transfection. Biomaterials. 2012, 33(2), 644–658.
doi: 10.1016/j.biomaterials.2011.09.076.
30. Nishimura T., Matsuo T., Sakurai K. Metalion induced transition from multi to singlebilayer tubes in histidine bearing lipids and formation of monodisperse Au nanoparticles. Phys. Chem. Chem. Phys. 2011, 13(35), 15899–15905.
doi: 10.1039/c1cp21065c.
31. Onishi H, Matsuyama M. Conjugate between chondroitin sulfate and prednisolone with a glycine linker: preparation and in vitro conversion analysis. Chem. Pharm. Bull. (Tokyo). 2013, 61(9), 902–912.
http://dx.doi.org/10.1248/cpb.c13-00189
32. Badenhorst C. P., van der Sluis R., Erasmus E., van Dijk A. A. Glycine conjugation: importance in metabolism, the role of glycine Nacyltransferase, and factors that influence interindividual variation. Expert Opin. Drug. Metab. Toxicol. 2013, 9(9), 1139–1153.
doi: 10.1517/17425255.2013.796929.
33. Bordallo H. N., Boldyreva E. V., Buchsteiner A., Koza M. M., Landsgesell S. Structureproperty relationships in the crystals of the smallest amino acid: an incoherent inelastic neutron scattering study of the glycine polymorphs. J. Phys. Chem. B. 2008, 112(29), 8748–8759.
doi: 10.1021/jp8014723.
34. Petrikov S., Zinkin V. Y., Solodov A. A., Roar A. A., Krylov V. V. Use of enteral glutamine in the structure of artificial feeding in patients with intracranial hemorrhages. Biulleten intensivnoi terapii. 2010, N 4, P. 59–64. (In Russian).
35. Qiao J., Qi L., Yan H., Li Y., Mu X. Microchip CELIF method for the hydrolysis of Lglutamine by using Lasparaginase enzyme reactor based on gold nanoparticles. Electrophoresis. 2013, 34(3), 409–416.
doi: 10.1002/elps.201200461.
36. Deng Y., Wang W., Ma C., Li Z. Fabrication of an electrochemical biosensor array for simultaneous detection of Lglutamate and acetylcholine. J. Biomed. Nanotechnol. 2013, 9(8), 1378–1382.
http://dx.doi.org/10.1166/jbn.2013.1633
37. Tyurenkov I. N., Bagmutova V. V., Chernysheva J. V., Marchenkova O. V., Berestovitsa V. M., Vasilieva O. S. Comparison of glutamic acid and its new derivative hydrochloride beta phenylglutarimide acid (glutarone) psychotropic properties. Fundamentalnyie issledovaniia. 2013, N 3, P. 167–172. (In Russian).
38. Ucero A. C., Berzal S., Oca?aSalceda C., Sancho M., Orz?ez M., Messeguer A., RuizOrtega M., Egido J., Vicent M. J., Ortiz A., Ramos A. M. A polymeric nanomedicine diminishes inflammatory events in renal tubular cells. PLoS One. 2013, 8(1), 51992.
doi: 10.1371/journal.pone.0051992.
39. CamposFerraz P. L., Bozza T., Nicastro H., Lancha A. H. Jr. Distinct effects of leucine or a mixture of the branchedchain amino acids (leucine, isoleucine, and valine) supplementation on resistance to fatigue, and muscle and liverglycogen degradation, in trained rats. Nutrition. 2013, 29(11–12), 1388–1394.
doi: 10.1016/ j.nut.2013.05.003.
40. Liao M., Liu H. Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. Environ. Toxicol. Pharmacol. 2012, 34(1), 67–80.
doi: 10.1016/j.etap.2011.05.014.
41. Chekman I. S., Simonov P. V. Natural nanostructures and nanomechanisms. Kyiv: Zadruha. 2012, 104 p. (In Ukrainian).
42. Kumar M., Pandey R. S., Patra K. C., Jain S. K., Soni M. L., Dangi J. S., Madan J. Evaluation of neuropeptide loaded trimethyl chitosan nanoparticles for nose to brain delivery. Int. J. Biol. Macromol. 2013, V. 61, P. 189–195.
doi: 10.1016/j.ijbiomac.2013.06.041.
43. Raula J., Hanzl?kov? M., Rahikkala A., Hautala J., Kauppinen E. I., Urtti A., Yliperttula M. Gasphase synthesis of solid state DNA nanoparticles stabilized by lleucine. Int. J. Pharm. 2013, 444(1–2), 155–161.
doi: 10.1016/j.ijpharm.2013.01.026.
44. AlAhmady Z. S., AlJamal W. T., Bossche J. V., Bui T. T., Drake A. F., Mason A. J., Kostarelos K. Lipidpeptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo. ACS Nano. 2012, 6(10), 9335–9346.
doi: 10.1021/nn302148p.
45. Kurtseva A. A., Smakhtin M. Yu., Ivanov A. V., Besedin A. V. The inflluence of amino acids — components of glyhislys peptide on skin wounds regeneration and neutrophil functions. Kurskii nauchnopracticheskii vestnik «Chelovek i zdorovie». 2008, N 3, P. 5–10. (In Russian).
46. Lee M. K., Kim S., Ahn C. H., Lee J. Hydrophilic and hydrophobic amino acid copolymers for nanocomminution of poorly soluble drugs. Int. J. Pharm. 2010, 384(1–2), 173–180.
doi: 10.1016/ j.ijpharm.2009.09.041.
47. Daima H. K., Selvakannan P. R., Shukla R., Bhargava S. K., Bansal V. Finetuning the antimicrobial profile of biocompatible gold nanoparticles by sequential surface functionalization using polyoxometalates and lysine. PLoS One. 2013, 8 (10), 79676.
doi: 10.1371/journal.pone.0079676.
48. Khosroshahi A. G., Amanlou M., Sabzevari O., Daha F. J., Aghasadeghi M. R., Ghorbani M., Ardestani M. S., Alavidjeh M. S., Sadat S. M., Pouriayevali M. H., Mousavi L., Ebrahimi S. E. A comparative study of two novel nanosized radiolabeled analogues of methionine for SPECT tumor imaging. Curr. Med. Chem. 2013, 20(1), 123–133.
http://dx.doi.org/10.2174/0929867311302010012
49. Okada Y., Takano T. Y., Kobayashi N., Hayashi A., Yonekura M., Nishiyama Y., Abe T., Yoshida T., Yamamoto T. A., Seino S., Doi T. New protein purification system using goldmagnetic beads and a novel peptide tag, «the methionine tag». Bioconjug. Chem. 2011, 22(5), 887–893.
doi: 10.1021/bc100429d.
50. Rai S., Singh H. Electronic structure theory based study of proline interacting with gold nano clusters. J. Mol. Model. 2013, 19(10), 4099–40109.
doi: 10.1007/s008940121711x.
51. Soldatkin O. O. Development of amperometric microbiosensor for Dserin determination. Biotechnologiia. 2011, 4(3), 36–42. (In Ukrainian).
52. An J. H., Oh B. K., Choi J. W. Detection of tyrosine hydroxylase in dopaminergic neuron cell using gold nanoparticlesbased barcode DNA. J. Biomed. Nanotechnol. 2013, 9(4), 639–643.
http://dx.doi.org/10.1166/jbn.2013.1525
53. Ditto A. J., Reho J. J., Shah K. N., Smolen J. A., Holda J. H., Ramirez R. J., Yun Y. H. In vivo gene delivery with Ltyrosine polyphosphate nanoparticles. Mol. Pharm. 2013, 10(5), 1836–1844.
doi: 10.1021/mp300623a.
54. Liang R. P., Meng X. Y., Liu C. M., Qiu J. D. PDMS microchip coated with polydopamine/gold nanoparticles hybrid for efficient electrophoresis separation of amino acids. Electrophoresis. 2011, 32(23), 3331–3340.
doi: 10.1002/elps.201100403.
55. Selvakannan P., Mantri K., Tardio J., Bhargava S. K. High surface area AuSBA15 and AuMCM41 materials synthesis: tryptophan amino acid mediated confinement of gold nanostructures within the mesoporous silica pore walls. J. Colloid. Interface Sci. 2013, N 394, P. 475–484.
doi: 10.1016/j.jcis.2012.12.008.
56. Li J., Kuang D., Feng Y., Zhang F., Xu Z., Liu M., Wang D. Green synthesis of silver nanoparticlesgraphene oxide nanocomposite and its application in electrochemical sensing of tryptophan. Biosens. Bioelectron. 2013, V. 42, P. 198–206.
doi: 10.1016/ j.bios.2012.10.029.
57. Akagi T., Piyapakorn P., Akashi M. Formation of unimer nanoparticles by controlling the selfassociation of hydrophobically modified poly(amino acid)s. Langmuir. 2012, 28(11), 5249–5256.
doi: 10.1021/la205093j.
58. Sergeev H. B. Nanochemistry. Moskow: MSU Publishing house. 2003, 288 p. (In Russian).
59. Chekman I. S. Nanopharmacology. Kyiv: Zadruha. 2011, 424 p. (In Ukrainian).