ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta" v. 7, no 5, 2014
https://doi.org/10.15407/biotech7.05.077
Р. 77-84, Bibliography 32, Russian.
Universal Decimal classification: 581.1:577.15
THE PROTECTIVE EFFECT OF BRASSINOSTEROIDS ON MILLET PLANTS UNDER ABIOTIC STRESSES
Vayner A. O.1, Kolupaeuv Y. E.1, Shvidenko N. V.1, Khripach V. A.2
1Dokuchaev Kharkіv National Agrarian University, Ukraine
2Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk
The effect of brassinosteroids on the resistance of millet plants (Panicum miliaceum L.) to damaging heating and soil drought was investigated. The pretreatment of the seeds with 20 nM of 24-epibrassinolide and 28-homobrassinolide solutions increased the survival rate of seedlings after their exposure to hyperthermia (heating in bath of water ultrathermostat at 47 °C for 10 min). Under the influence of brassinosteroids the increase in activity of antioxidant enzymes (superoxide dismutase, catalase, and guaiacol peroxidase) and the decrease in the content of lipid peroxidation product malondialdehyde in millet seedlings after heat stress were observed. In this case, the protective effect of 24-epibrassinolide was more significant as compared to the effect of 28-homobrassinolide. In the conditions of drought (the decrease of soil moisture to 25% of field water capacity) plants grown from seeds treated by 24-epibrassinolide exhibited ability for growth and higher activity of the antioxidant enzymes compared to control plants. A conclusion concerning the essential role of the induction of antioxidant enzymes in implementation of the protective effect of brassinosteroids on millet plants under abiotic stresses and the prospects of practical application of presowing treatment with them for prolonged non-specific activation of plant resistance was made.
Key words: brassinosteroids, hyperthermia, soil drought, Panicum miliaceum L.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Loreto F., Centritto M. Leaf carbon assimilation in a waterlimited world. Plant Biosyst. 2008. 142(1), 154–161.
http://dx.doi.org/10.1080/11263500701872937
2. Chaves M. M., Flexas J., Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 2009, V. 103, P. 551–560.
http://dx.doi.org/10.1093/aob/mcn125
3. Yavorska V. K., Dragovoz I. V., Kryuchkova L. O., Kurchiy B. O., Makoveichuk T. I. Growth regulators on the basis of natural raw materials and their application in crop. Kyiv.: Logos, 2006, 176 p. (In Ukrainian).
4. Kyrychenko O. V., Gryniuk S. O. Growthregulatory activity of the algae extract. Biotechnol. acta. 2013, 6(5), 143–149. (In Russian). doi: 10.15407/biotech6.05.143
5. Khripach V., Zhabinskii V., De Groot A. Twenty years of brassinosteroids: Steroidal plant hormones warrant better crops for the XXI century. Ann. Bot. 2000, V. 86, P. 441–447.
http://dx.doi.org/10.1006/anbo.2000.1227
6. Bajguz A., Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 2009, V. 47, P. 1–8.
http://dx.doi.org/10.1016/j.plaphy.2008.10.002
7. Kamuro Y., Takatsuto S. Potential application of brassinosteroids in agricultural fields. Brassinosteroids: Steroidal Plant Hormones (Eds. A. Sakurai, T. Yokota, S.D. Clouse). Tokyo: Springer–Verlag, 1999, 223–241 p.
8. Zhao Y.J., Chen J.C. Studies on physiological action and application of 24epibrassinolide in agriculture. Brassinosteroids. Bioactivity and Crop Productivity. 2003, 159–170 p.
9. Budykina N. P., Shibaeva T. G., Titov A. F. Effects of epin extra, a synthetic analogue of 24epibrassionolide, on stress resistance and productivity of cucumber plants (Cucumis sativus L.). Trudy Karelskogo nauchnogo tsentra RAN. 2012, N 2, P. 47–55. (In Russian).
10. Prusakova L. D., Chizhova S. I. Application of brassinosteroids in extreme conditions for plants. Agrokhimiia. 2005, N 7, P. 87–94. (In Russian).
11. Singh I., Shono M. Physiological and molecular effects of 24epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul. 2005, V. 47, P. 111–119.
http://dx.doi.org/10.1007/s10725-005-3252-0
12. Divi U.K., Rahman T., Krishna P. Brassinosteroidmediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology. 2010, V. 10, P. 151–164.
http://dx.doi.org/10.1186/1471-2229-10-151
13. Mazorra L. M., Holton N., Bishop G. J., Nunez M. Heat shock response in tomato brassinosteroid mutants indicates that thermotolerance is independent of brassinosteroid homeostasis. Plant Physiol. Biochem. 2011, V. 49, P. 1420–1428.
http://dx.doi.org/10.1016/j.plaphy.2011.09.005
14. Vayner A. A., Kolupaev Yu. E., Yastreb T. O., Khripach V. A. The participation of reactive oxygen species in the induction of thermotolerance of wheat coleoptiles caused by exogenous brassinosteroids. Visn. Kharkiv.nats. ahrarn. univ. Seriia Biolohiia. 2013, 3(22), 39–45. (In Ukrainian).
15. Ogweno J. O., Song X. S., Shi K., Hu W. H., Mao W. H., Zhou Y. H., Yu J. Qu., Nogues S. Brassinosteroids alleviate heatinduced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J. Plant Growth Regul. 2008, V. 27, P. 49–57.
http://dx.doi.org/10.1007/s00344-007-9030-7
16. Hayat S., Hasan S. A., Yusuf M., Hayat Q., Ahmad A. Effect of 28homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiate. Environ. Exp. Bot. 2010, V. 69, P. 105–112.
http://dx.doi.org/10.1016/j.envexpbot.2010.03.004
17. Pustovitova T. N., Zhdanova N. E., Zholkevich V. N. Improving drought resistance under epibrassinolide influence. Dokl. RAN. 2001, 376(5), 697–700. (In Russian).
18. Yuan G. F., Jia C. G., Li Z., Sun B., Zhang L. P., Liu V., Wang Q. Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Sci. Horticult. 2010, V. 126, P. 103–108.
http://dx.doi.org/10.1016/j.scienta.2010.06.014
19. Li Y. H., Liu Y. J., Xu X. L., Jin M., An L. Z., Zhang H. Effect of 24epibrassinolide on drought stressinduced changes in Chorispora bungeana. Biol. Plant. 2012, V. 56, P. 192–196.
http://dx.doi.org/10.1007/s10535-012-0041-2
20. Prusakova L. D., Chizhova S. I., Ageeva L. F. Influence of epibrassinolide and ecost on drought resistance and productivity of spring wheat. Agrokhimiia. 2000, N 3, P. 50–54. (In Russian).
21. Shao H.B., Chu L.Y., Lu Zh.H., Kang C.M. Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int. J. Biol. Sci. 2008, V. 4, P. 8–14.
http://dx.doi.org/10.7150/ijbs.4.8
22. Kolupaev Yu. E., Karpets Yu. V. Reactive oxygen species and stress signaling in plants. Ukr. biochim. zh. 2014, 86(4), 18–35. (In Russian).
23. Fariduddin Q., Khalil R. R., Mir B. A., Yusuf M., Ahmad A. 24Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ. Monit. Assess. 2013, V. 185, P. 7845–7856.
http://dx.doi.org/10.1007/s10661-013-3139-x
24. Talaat N. B., Shawky B. T. 24Epibrassinolide alleviates saltinduced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant system in wheat (Triticum aestivum L.). Acta Physiol. Plant. 2013, V. 35, P. 729–740.
http://dx.doi.org/10.1007/s11738-012-1113-9
25. Xia X. J., Wang Y. J., Zhou Y. H. Xia X. J., Wang Y. J., Zhou Y. H., Taj Y., Mao W. H., Shi K., Asami T., Chen Zh., Yu J.Q. Reactive oxygen species are involved in brassinosteroidinduced stress tolerance in cucumber. Plant Physiol. 2009, V. 150, P. 801–814.
http://dx.doi.org/10.1104/pp.109.138230
26. Swamy K. N., Anuradha S., Ramakrishna B., Siddulu N., Rao S. R. R. Cadmium toxicity is diminished by 24epibrassinolide in seedlings of Trigonella foenumgraecum L. Genetics Plant Physiol. 2011, 1(3–4), 163–175.
27. Ozdemir F., Bor M., Demiral T., Turkan I. Effects of 24epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul. 2004, V. 42, P. 203–211.
http://dx.doi.org/10.1023/B:GROW.0000026509.25995.13
28. Yastreb T. O., Miroshnichenko N. N., Kolupaev Yu. E., Kots G. P. The Adaptive Effect of Reakom Microfertilizer and Salicylic and Succinic Acids on Millet Plants. Agrokhimiia. 2012, N 4, P. 60–67. (In Russian).
29. Lugovaya A. A., Karpets Yu. V., Oboznyy A. I. ., Kolupaev Yu. E. Stress protective effect of jasmonic acid and succinic acid on barley plants in conditions of drought. Agrokhimiia. 2014, N 4, P. 48–55. (In Russian).
30. Merzliak M. N., Pogosian S. I., Yuferova S. G., Shevyreva V, A. 2thiobarbituric acid using in the study of lipid peroxidation in plant tissues. Biol. nauky. 1978, N 9, P. 86–94. (In Russian).
31. Avalbaev A. M., Yuldashev R. A., Shakirova F. M. Physiological action of phytohormones brassinosteroids class on plants. Uspekhi sovrem. biologii. 2006, 126(2), 192–200. (In Russian).
32. Zhang S., Cai Z., Wang X. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc. Natl. Acad. Sci. USA. 2009, V. 106, P. 1–6.
http://dx.doi.org/10.1073/pnas.0900349106