ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 5, 2014
https://doi.org/10.15407/biotech7.05.035
Р. 35-42, Bibliography 41, English.
Universal Decimal classification: 611.018.2/.6:615.014.41:618.11-002.2
Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
The research aim was to investigate the influence and localization of cryopreserved bone marrow-derived multipotent mesenchymal stromal cells when intravenousy administered into the animals with chronic ovary inflammation. The results of histological examination showed a reparative activation with a tendency to morphology normalization of ovarian tissue on the background of inflammatory manifestation extinction in the experimental animals under condition of cell therapy. To the 21st day in the control group with physiological solution administration, total number of follicles relative to intact animals (18.3 ± 4.52%) was reduced (7.4 ± 2.18%), and 85.3 ± 5.2% oocytes had the signs of apoptosis (Annexin+). In the experimental group the number of follicles was significantly increased to the amount of 15.3 ± 1.8%, and the one of apoptotic oocytes declined (5.7 ± 0.8%) versus the control. Fluorescent microscopy of cryostatic ovary slices of the animals treated with PKH-26 labeled cells showed the presence of diffuse distribution of luminescent objects which were of small cell conglomerates shape. Cryopreserved bone marrow-derived multipotent mesenchymal stromal cells under condition of intravenous administration in the animals with chronic ovary inflammation were established to cause a modulating effect on inflammation course, induce the folliculogenesis recovery and being revealed in the ovaries of experimental animals to the 10th and 21st days of therapy.
Key words: chronic inflammation of ovaries, bone marrow multipotent mesenchymal stromal cells, cell therapy
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Dubossarskaja Z. M., Miljanovskij A. I., Koljadenko V. G. Chronic inflammation of internal female genitals. Kyiv: Zdorovia. 2003, P. 115–118. (In Russian).
2. Drannik G. N. Clinical Immunology and Allergology. Moskva: OOO Med. inform. agentstvo, 2003. 604 p. (In Russian).
3. Grishhenko N. G., Klimenko N. A., Gorgol N. I. Tatarko S. V Effect of placental cryoextract on chronic inflammation of the ovaries in mice. Medycyna sohodni і zavtra. 2010, N 2–3, P. 7–17. (In Russian).
4. Takehara Y., Yabuuchi A., Ezoe K., Kuroda T. The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function. Labor. Invest. 2013, 93 (2), 181–193.
5. Fu X., He Y., Xie C., Liu W. Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage. Cytotherapy. 2008, 10 (4), 353–363.
https://doi.org/10.1080/14653240802035926
6. Weina L., Qixuan X., Junwen Q. Effect of mesenchymal stem cell transplantation on immunological injury of the ovary in mice. J. South Med. Univ. 2011, 31 (5), 825–829.
7. Komarova S., Roth J., Alvarez R., Curiel D. T., Pereboeva L. Targeting of mesenchymal stem cells to ovarian tumors via an artificial receptor. J. Ovar. Res. 2010, 3 (12), 12–18.
https://doi.org/10.1186/1757-2215-3-12
8. Haack-Sorensen M., Bindslev L., Mortensen S., Friis T., Kastrup J. The influence of freezing and storage on the characteristics and functions of human mesenchymal stromal cells isolated for clinical use. Cytotherapy. 2007, 9 (4), 328–337.
https://doi.org/10.1080/14653240701322235
9. Dittmar T., Entschladen F. Migratory properties of mesenchymal stem cells. Adv. Biochem. Eng. Biotechnol. 2013, V. 129, P. 117–136.
https://doi.org/10.1007/10_2012_144
10. Egorov N. S. Practical work on Microbiology. Mosсow: MGU. 1976. 307 p. (In Russian).
11. Oktay K., Newton H., Mullan J. Development of human primordial follicles to antral stages in SCID/hpg mice stimulated with follicle stimulating hormone. Hum. Reprod. 1998, 13 (5), 1133–1138.
https://doi.org/10.1093/humrep/13.5.1133
12. Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results. Hum. Reprod. 1986, 1 (2), 81–87.
13. Baschong W., Suetterlin R., Laeng R. H. Control of autofluorescence of archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning microscopy (CLSM). J. Histochem. Cytochem. 2001, 49 (12), 1565–1572.
https://doi.org/10.1177/002215540104901210
14. Kiroshka V. V., Medinec E. A., Tishhenko Ju. O., Bondarenko T. P. Dynamics of changes in morphology neonatal ovarian tissue during cold storage, depending on the composition of the incubation medium. Problemy kriobiolohii. 2012, 22 (1), 61–70. (In Russian).
15. Johnsson C., Festin R., Tufveson G., Totterman T. H. Ex vivo PKH26-labelling of lymphocytes for studies of cell migration in vivo. Scand. J. Immunol. 1997, 45 (5), 511–514.
https://doi.org/10.1046/j.1365-3083.1997.d01-430.x
16. Le Blanc K., Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat. Rev. Immunol. 2012, 12 (5), 383–396.
https://doi.org/10.1038/nri3209
17. Karp J. M., Leng G. S. Mesenchymal stem cell homing: the devil is in the details. Stem Cells. 2009, 4 (3), 206–216.
https://doi.org/10.1016/j.stem.2009.02.001
18. Lee J. S., Hong J. M., Moon G. J., Lee P. H., Ahn Y. H., Bang O. Y. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010, 28 (6), 1099–1106.
https://doi.org/10.1002/stem.430
19. Horuk R. Chemokines receptors. Cytokine and growth factor review. 2001, 12 (4), 313–335.
20. Kucia M., Reca R., Miecus K., Wanzeck J., Wojakowski W, Janowska-Wieczorek A., Ratajczak J., Ratajczak M. Z. Trafficking of normal stem cell and metastasis of cancer stem cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4 axis. Stem Сells. 2005, 23 (7), 879–894.
21. Bhakta S., Hong P., Koc O. The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation. Cardiovasc. Revasc. Med. 2006, 7 (1), 19–24.
https://doi.org/10.1016/j.carrev.2005.10.008
22. Erlandson A., Larsson J., Forsberg-Nilsson K. Stem cell factor is a chemoattractant and a survival factor for the CNC stem cell. Exp. Cell Res. 2004, 301 (2), 201–210.
https://doi.org/ 10.1016/j.yexcr.2004.08.009
23. Wondergem R., Ecay T. W., Mahieu F. HGF\SF and menthol increase human glioblastoma cell calcium and migration. Biochem. Biophys. Res. Commun. 2008, 372 (1), 210–215.
https://doi.org/10.1016/j.bbrc.2008.05.032
24. Krampera M., Cosmi L., Angeli R., Pasini A., Liotta F., Andreini A., Santarlasci V., Mazzinghi B., Pizzolo G., Vinante F., Romagnani P., Maggi E., Romagnani S., Annunziato F. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 2006, 24 (2), 386–398.
https://doi.org/10.1634/stemcells.2005-0008
25. Tabera S., Perez-Simon J. A., Diez-Campelo M. The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica. 2008, 93 (9), 1301–1309.
https://doi.org/10.3324/haematol.12857