ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 5, 2014
https://doi.org/10.15407/biotech7.05.094
Р. 94-100, Bibliography 21, English.
Universal Decimal classification: 579:662.7
COMPOSITION AND ACTIVITY OF BACTERIAL COMMUNITY OF COAL TAILING
Mechnikov Odesa National University, Ukraine
The aim of this research was to study the composition of aboriginal bacterial community of coal tailing and to evaluate lixiviation activity of different groups of microorganisms belonging to this community. Using standard microbiological techniques we obtained and quantified the saving cultures of microorganisms from different physiological groups — filamentous fungi, heterotrophic microorganisms, mesophilic and thermophilic moderately acidophilic sulfur-oxidizing chemolithotrophic bacteria. Their oxidative activity was also established. The optimal results were achieved for collective leaching of rare and heavy metals into the solution under thermophilic conditions, which are favorable for the growth and activity of Sulfobacillus and under mesophilic conditions with the usage of ferrous iron as an energy substrate. This confirms the leading role of A. ferrooxidans in the processes of bacterial leaching of metals. Comparing our results with the available literature data we made a conclusion that the qualitative composition of acidophilic chemolithotrophic bacteria living in technogenic waste did not differ from the microbiocenose structure of natural sulfide ores.
Key words: coal tailing, the aboriginal bacterial community, chemolithotrophic acidophilic bacteria, leaching activity.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Judovich Ju. Ja., Ketris M. P., Mered A. V. Impurity elements in fossil coals. Leningrad: Khimiya. 1985. 238 p. (In Russian).
2. Zubova L. G. Heaps of coal mines — sources of raw materials for metallurgy. Ugol Ukrainy. 2000, V. 6, P. 32–33. (In Russian).
3. Tolstov E. A., Latyshev V. E., Lilbok L. A. Possible applications of biogeotechnology in the leaching poor and refractory ores. Gornyi zh. 2003, V. 8, P. 63–65. (In Russian).
4. Vasileva T. V., Blayda I. A., Ivanica V. A. Metals from industrial waste. Energosberezhenie. 2011, V. 5, P. 31–33. (In Russian).
5. Brierley J. A. Expanding role microbiology in metallurgical processes. Min. Engin. 2000, 52(11), 49–53.
6. Kuzyakina T. I., Haynasova T. S., Levenec O. O. Biotechnology extraction of metals from sulfide ores. Vestnik nauk o Zemle. 2008, 60(12), 76–85. (In Russian).
7. Blayda I. A. Extraction of valuable metals from industrial waste biotechnological methods (Review). Energotekhnologii i resursosberezhenie. 2010, V. 6, P. 39–45. (In Russian).
8. Karavayko G. I., Kuznetsov S. I., Golomzik E. I. The Role of Microorganisms in the leaching of metals from ores. Moskva: Nauka. 1972. 248 p. (In Russian).
9. Blayda I. A., Vasileva T. V., Slyusarenko L. I., Barba I. N., Ivanitsa V. A. Composition and leaching activity of energy industrial waste microbiocenosis. Problemy ekologichnoi bіitekhnologii. 2013, 1. Available at http://jrnl.nau.edu.ua/index.php/ecobiotech/article/ view/4592. (In Russian).
10. Karavayko G. I. Practical Guide to biogeotechnology metals. Moskva: AN SSSR. 1989. 371 p. (In Russian).
11. Methods for General Bacteriology. V. 2. Moskva: Mir. 1984. 265 p. (In Russian).
12. Modern microbiology. Prokaryotes. Lengeler J., Drevs G., Shlegel G. (Eds). V. 2. Moskva: Mir. 2005. 496 p. (In Russian).
13. Bogdanova T. I., Tsaplina I. A., Kondrateva T. F., Duda V. I., Suzina N. E., Melamud V. S., Tourova T. P., Karavaiko G. I. Sulfobacillus thermotolerans sp. nov., a thermotolerant chemolithotrophic bacterium. Int. J. Syst. Evol. Microbiol. 2006, V. 56, P. 1039–1042.
http://dx.doi.org/10.1099/ijs.0.64106-0
14. Havezov I., Calev D. Atomic absorption analysis. Leningrad: Khimiia. 1983. 144 p. (In Russian).
15. Gericke M., Pinches A., van Rooyen J. V. Bioleaching of a chalcopyrite concentrate using an extremely thermophilic culture. Int. J. Min. Proces. 2001, 62(1), 243–255.
http://dx.doi.org/10.1016/S0301-7516(00)00056-9
16. Kulebakin V. S. Bacterial leaching of sulphides. Novosibirsk: Nauka. 1978. 262 p. (In Russian).
17. Blayda I. A., Vasileva T. V., Slyusarenko L. I., Hitrich V. F., Barba I. N. Biogeochemical role of microorganisms in the leaching of valuable components from a germanium material. Kompleksnoie ispolzovaniie mineralnogo syria. 2010, V. 3, P. 59–68. (In Russian).
18. Cheng Haina, Hu Yuehua, Gao Jian, Ma Heng. Bioleaching of anilite by Acidithiobacillus ferrooxidans. Trans. Nonferrous Met. Soc. China. 2008, V. 18, P. 1410–1414.
http://dx.doi.org/10.1016/S1003-6326(09)60017-0
19. Belgin Baya, Bulent Sari. Bioleaching of dewatered metal plating sludge by Acidithiobacillus ferrooxidans using shake flask and completely mixed batch reactor. Afr. J. Biotechnol. 2010, 9 (44), 7504–7512.
20. Sookie S. Bang, Sandeep S. Deshpande, Kenneth N. Han. The oxidation of galena using Thiobacillus ferrooxidans. Hydrometallurgy. 1995, 37(2), 181–192.
http://dx.doi.org/10.1016/0304-386X(94)00059-C
21. Jingwei Wang, Jianfeng Bai, Jinqiu Xu, Bo Liang. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. Min. Engin. 2011, 24(11), 1128–1131.