ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 4, 2014
https://doi.org/10.15407/biotech7.04.009
Р. 9-24, Bibliography 111, Ukrainian.
Universal Decimal classification: 577.1; 60-022.513.2
ULTRAFINE FLUORESCENT DIAMONDS IN NANOTECHNOLOGY
Palladian Biochemistry Institute of the National Academy of Sciences of Ukraine, Kyiv
The purpose of the work is to summarize the literature data concerning ultrafine diamonds, namely their industrial production, as well as considerable photostability and biocompatibility that promote their use in modern visualization techniques. It is shown that due to the unique physical properties, they are promising materials for using in nanotechnology in the near future. Possibility of diverse surface modification, small size and large absorption surface are the basis for their use in different approaches for drug and gene delivery into a cell. The changes in the properties of nanodiamond surface modification methods of their creation, stabilization and applications are described. It can be said that fluorescent surface-modified nanodiamonds are a promising target in various research methods that would be widely used for labeling of living cells, as well as in the processes of genes and drugs delivery into a cell.
Key words: ultrafluorescent diamonds, genes and drugs delivery into a cell.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Chekman І. S. Nanopharmacology. Кyiv: Zadruga. 2011, 424 p. (In Ukrainian).
2. Liang X. J., Chen C., Zhao Y., Jia L., Wang P. C. Biopharmaceutics and Therapeutic Potential of Engineered Nanomaterials. Curr. Drug Metab. 2008, 9 (8), 697–709.
3. Wang H., Wang Q., Cheng Y., Li K., Yao Y., Zhang Q., Dong C., Wang P., Schwingenschl?gl U., Yang W., Zhang X. X. Doping Monolayer Graphene with Single Atom Substitutions. Nano Lett. 2012, 12 (1), 141–144.
4. Sagalyanov І. Yu., Prylutskyy Yu. I. Radchenko T. M., Tatarenko V. A. Graphene systems: methods of manufacture and processing, structure and functional properties. Uspikhy fizychnykh metodiv. 2010, 11 (1), 95–138. (In Ukrainian).
5. Rotko D. M., Prylutska S. V., Bogutska K. I., Prylutskyy Yu. I. Carbon nanotubes as new materials for neuroengineering. Biotekhnologiia. 2011, 4 (5), 9–24. (In Ukrainian).
6. Prylutska S. V., Remeniak О. V., Honcharenko Yu. V., Prylutskyy Yu. I. Carbon nanotubes as a new class of materials for nanobiotechnology. Biotekhnolohiia. 2009, 2 (2), 55–66. (In Ukrainian).
7. Golinko V. M., Chekman I. S., Puzyrenko A. M., Gorchakova N. O. Role of capillaries in natural nanoprocesses. Ukrainskyi naukovomedychnyi molodіzhnyi zhurnal. 2012, N. 4, P. 5–9. (In Ukrainian).
8. Prylutska S. V., Rotko D. M., Prylutskiy Yu. I., Rybalchenko V. K. Toxicity of carbon nanostructures in vitro and in vivo systems. Sovremennye problemy toksikologii. 2012, 3–4 (58–59), 49–57. (In Ukrainian).
9. Prylutska S. V., Remenyak О. V., Burlaka A. P., Prylutskyy Yu. I. Perspective of carbon nanotubes application in cancer therapy. Oncologiia. 2010, 12 (1), 5–9. (In Ukrainian).
10. Prylutska S. V., Kіchmarenko Yu. M., Bogutska K. I., Prylutskyy Yu. I. Fullerene C60 and its derivatives as anticancer agents: problems and prospects. Biotekhnolohiia. 2012, 5 (3), 9–17.
11. Nazarenko V. І., Demchenko O. P. Nanodiamands for fluorescent cell and sensor nanotechnology. Biotechnol. acta. 2013, 6 (5), 9–18. (In Ukrainian). https://doi.org/10.15407/biotech6.05.143
12. Pycke B. F. G., Benn T. M., Herckes P., Westerhoff P., Halden R. U. Strategies for quantifying C60 fullerenes in environmental and biological samples and implications for studies in environmental health and ecotoxicology. Trends Anal. Chem. 2011, 30 (1), 44–57. https://doi.org/10.1016/j.trac.2010.08.005
13. Kumar V., Kumari A., Guleria P., Yadav S. K. Evaluating the Toxicity of Selected Types of Nanochemicals. Rev. Environ Contam Toxicol. Reviews of Environmental Contamination and Toxicology. 2012, V. 215, P. 39–121. a href="https://doi.org/10.1007/9781461414636_2" ta" re">ht"ps://doi.org/10.1007/9781461414636_2
14. Khalid Mohamed ElSay. Nanodiamond as a drug delivery system: Applications and prospective. J. Appl. Pharmaceut. Sci. 2011, 1 (6), 29–39. http://imsear.hellis.org/handle/123456789/150846
15. Schrand A. M., Huang H., Carlson C., Schlager J. J., ?sawa E., Hussain S. M., Dai L. Are diamond nanoparticles cytotoxic? J. Phys. Chem. B. 2007, V. 111, P. 2–7.
16. Boudou J. P., Curmi P. A., Jelezko F., Wrachtrup J., Aubert P., Sennour M., Balasubramanian G., Reuter R., Thorel A., Gaffet E. High yield fabrication of fluorescent nanodiamonds. Nanotechnology. 2009, 20 (23), 1–11. a href="https://doi.org/10.088/09574484/20/23/235602""""https://doi.org/10.1088/09574484/20/23/235602.
17. H?rt A., Schmich E., Garrido J. A., Hernando J., Catharino S. C. R., Walter S., Feulner P., Kromka A., Steinm?ller D., Stutzmann M. Proteinmodified nanocrystalline diamond thin films for biosensor applications. Nat. Mater. 2004, V. 3, P. 736–742. https://doi.org/10.1038/nmat1204
18. Davies G., Collins A. T. Vacancy cbocker T., Lasseter T. L., Russell J. N. Jr., Smith L. M., Hamers R. J. DNAmodified nanocrystalline diamond thinfilms as stable, biologically active substrates. Nat. Mater. 2002, V. 1, P. 253–257. https://doi.org/10.1038/nmat779.
33. Gu H., Su X., Loh K. P. Conductive polymermodified borondoped diamond for DNA hybridization analysis. Chem. Phys. Lett. 2004, 388 (4–6), 483–487. https://doi.org/10.1016/j.cplett.2004.03.046.
34. Takahashi K., Tanga M., Takai O., Okamura H. DNA preservation using diamond chips. Diam Rel. Mater. 2003, 12 (3–7), 572–576. https://doi.org/10.1016/S09259635(03)000700a href="https://doi.org/10.116/S09259635(03)000700" " ">"https://doi.org/10.1016/S09259635(03)000700
35. Ushizawa K., Sato Y., Mitsumori T., Machinami T., Ueda T., Ando T. Covalent immobilization of DNA on diamond and its verification by diffuse reflectance infrared spectroscopy. Chem. Phys. Lett. 2002, 351 (12), 105–108. a href="https://doi.org/10.1016/S00092614(01)013628" " ">"ttps://doi.org/10.1016/S00092614(01)013628.
36. Mitura S., Mitura A., Niedzielski P., Couvrat P. Nanocrystalline diamond coatings. Elsevier. Chaos, Solitons and Fractals. 1999, 10 (12), 2165–2176. a href="https://doi.org/10.1016/S09600779(98)002513" " ">"ttps://doi.org/10.1016/S09600779(98)002513.
37. Kossovsky N., Gelman A., Hnatyszyn H. J., Rajguru S., Garrell R. L., Torbati S., Freitas S. S. F., Chow G. M. Surface modified diamond nanoparticles as antigen delivery vehicles. Bioconjugate Chem. 1995, 6 (5), 507–511. https://doi.org/10.1021/bc00035a001.
38. Puzyr A. P., Bondar V. S., Belobrov P. I., Bukaemskii A. A. Preparation of nanodiamondprotein?aluminum oxide complex. Dokl. Biochem. 2000, 373 (1–6), 139–141.
39. Purtov K. V., Bondar V. S., Puzyr A. P. Supramolecular structure of nanodiamond particles and obelin built up on a twodimensional plate. Dokl. Biochem. Biophys. 2001, 380 (1–6), 339–342.https://doi.org/10.1023/A:1012396327027.
40. Puzyr A. P., Tarskikh S. V., Makarskaya G. V., Chiganova G. A., Larionova I. S., Detkov P. Y., Bondar V. S. Damaging effect of detonation diamonds on human white and red blood cells in vitro. Dokl. Biochem. Biophys. 2002, V. 385, P. 201–204. https://doi.org/10.1023/A:1019959322589
41. Bondar V. S., Pozdnyakova I. O., Puzyr A. P. Applications of nanodiamonds for separation and purification of proteins. Phys. Solid State. 2004, 46 (4), 758–760. https://doi.org/10.1134/1.1711468
42. Bondar V. S., Puzyr A. P. Nanodiamonds for biological investigations. Phys. Solid State. 2004, 46 (4), 716–719. https://doi.org/10.1134/1.1711457
43. Puzyr A. P., Pozdnyakova I. O., Bondar V. S. Design of a luminescent biochip with nanodiamonds and bacterial luciferase. Phys. Solid State. 2004, 469 (4), 761–763. https://doi.org/10.1134/1.1711469.
44. Kuznetsov V. L., Chuvilin A. L., Butenko Yu. V., Usoltseva A. N. Carbon phase diagram at the nanoscale. Science and Technology of Fullerence Materials. Bernier P., Ebbesen T. W., Bethune D. S., Metzger R. M., Chiang L. Y., Mintmire J. W. Eds. Mater. Res. Soc. Proc. Pittsburgh, PA. 1995, V. 359, P. 105.
45. Barnard A. S., Russo S. P., Snook I. K. Coexistence of bucky diamond with nanodiamond and fullerene carbon phases. Phys. Rev. B. 2003, V. 68, P. 0734061–0734064. https://doi.org/10.1103/PhysRevB. 68.073406
46. Park N., Lee K., Han S., Yu J., Ihm J. Energetics of large carbon clusters: crossover from fullerenes to nanotubes. Phys. Rev. B. 2002, V. 65, P. 1214051–12140514. https://doi.org/10.1103/PhysRevB.65.121405.
47. Tomanek D., Schluter M. A. Growth regimes of carbon clusters. Phys. Rev. Lett. 1991, 67 (17), 2331–2335. https://doi.org/10.1103/PhysRevLett.67.2331
48. Mitura S., Mitura K., Niedzielski P., Louda P., Danilenko V. Nanocrystalline diamond, its synthesis, properties and applications. J. Achiev. Mater. Manufact. Engin. 2006, 16 (1–2), 9–16.
49. Aleksenskii A. E., Baidakova M. V., Vul A. Y., Siklitskii V. I. The structure of diamond nanoclusters. Phys. Solid State. 1999, 41 (4), 668–671.https://doi.org/10.1134/1.1130846
50. Shengfu Ji., Tianlai Jiang, Kang Xu, Shuben Li. FTIR study of the adsorption of water on ultradispersed diamond powder surface. Appl. Surf. Sci. 1998, V. 133, P. 231–238. ha href="ttps://doi.org/10.1016/S01694332(98)002098" " ">"tps://doi.org/10.1016/S01694332(98)002098
51. Iakoubovskii K., Baidakova M. V., Wouters B. H., Stesmans A., Adriaenssens G. J., Vul A. Ya., Grobet P. J. Structure and defects of detonation synthesis ND. Diam. Rel. Mater. 2000, 9 (3–6), 861–865. a href="https://doi.org/10.1016/S09259635(99)003544" " ">"ttps://doi.org/10.1016/S09259635(99)003544
52. Iakoubovskii K., Mitsuishi K., Furuya K. Highresolution electron microscopy of detonation nanodiamond. Nanotechnology. 2008, 19 (15), 1–5. a href="https://doi.org/101088/09574484/19/15/155705"""" https://doi.org/10.1088/09574484/19/15/155705
53. Raty J. Y., Galli G., Bostedt C., van Buuren T. W., Terminello L. J. Quantum Confinement and Fullerenelike Surface Reconstructions in Nanodiamonds. Phys. Rev. Lett. 2003, 90 (3), 0374011–0374014 .https://doi.org/10.1103/ PhysRevLett.90.037401
54. Kulakova I. I. Chemistry surface nano diamonds. Solid State Physics. 2004, 46 (4), 621–628.
https://doi.org/10.1134/1.1711440
55. Liu Y., Gu Z., Margrave J. L., Khabashesku V. N. Functionalization of Nanoscale Diamond Powder: Fluoro, Alkyl, Amino, and Amino AcidNanodiamond Derivatives. Chem. Mater. 2004. 16 (20), P. 3924–3930. https://doi.org/10.1021/cm048875q.
56. Huang L. C. L., Chang H. C. Adsorption — and immobilization of cytochrome c on nanodiamonds. Langmuir. 2004, 20 (14), 5879–5884. https://doi.org/10.1021/la0495736.
57. Kong X., Huang L. C. L., Liau S. C. V., Han C. C., Chang H. C. Polylysinecoated diamondnanocrystals for MALDITOF mass analysis ofDNA oligonucleotides. Anal. Chem. 2005, 77 (13), 4273–4277. https://doi.org/10.1021/ac050213c.
58. Chung P. H., Perevedentseva E., Tu J. S., Chang C. C., Cheng C. L. Spectroscopic study of biofunctionalized nanodiamonds. Diam. Rel. Mater. 2006, 15 (4–8), 622–625. https://doi.org/10.1016/j.diamond.2005.11.019.
59. Shenderova O. A., Zhirnov V. V., Brenner D. W. Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 2002, 27 (3–4), 227–356. https://doi.org/10.1080/10408430208500497.
60. Vereschagin A. L. Detonation Nanodiamonds. Altai State Technical University, Barnaul, Russian. Federation. 2001. (In Russian).
61. Danilenko V. V. From history discovery synthesis of nano diamonds. Solid State Physics. 2004, 46 (4), 581–584. a href="http://www.iofferssi.ru/journals/ftt/2004/04/%20p581584.pdf.""""http://www.ioffe.rssi.ru/journals/ftt/2004/04/ p581584.pdf.
62. Gogotsi Y., Welz S., Ersoy D. A., McNallan M. J. Conversion of silicon carbide to crystalline diamondstructured carbon at ambient pressure. Nature. 2001, V. 411, P. 283–287. https://doi.org/10.1038/35077031
63. Daulton T. L., Kirk M. A., Lewis R. S., Rehn L. E. Production of nanodiamonds by highenergy ion irradiation of graphite at room temperature. Nucl. Instrum. Meth. B. 2001, V. 175–177, P. 12–20. http://www.ioffe.rssi.ru/journals/ftt/2004/04/ p581584.pdf.
64. Banhart F., Ajayan P. M. Carbon onion as nanoscopic pressure cell for diamond formation. Nature. 1996, V. 382, P. 433–435. https://doi.org/10.1038/382433a0
65. Frenklach M., Howard W., Huang D., Yuan J., Spear K. E., Koba R. Induced nucleation of diamond powder. Appl. Phys. Lett. 1991, V. 59, P. 546–548. https://doi.org//10.1063/1.105434.
66. Danilenko V. V. Synthesizing and sintering of diamond by explosion. Moscow: Energoatomizdat. 2003, 272 p. (In Russian).
67. Tielens A., Seab C., Hollenbach D. J., Mckee C. F. Shock processing of interstellar dust diamonds in the sky. Astrophys. J. 1987, V. 319, P. 109–113. : https://doi.org/10.1086/184964.
68. Benedek G., Milani P., Ralchenko V. G. Nanostructured Carbon for Advanced Applications. Dordrecht: Kluwer Academic. NATO Science Series II: Mathematics, Physics and Chemistry. 2001, V. 24, 368 p.
69. Shenderova O. A., Gruen D. M. Ultrananocrystalline Diamond: Synthesis, Properties and Applications. William Andrew. 2006, 620 p.
70. Vicelli J. A. Ree F. H. Carbon particle phase transformation kinetics in detonation waves. J. Appl. Phys. 2000, V. 88, P. 683–690. https://doi.org/10.1063/1.373721/
71. Vicelli J. A., Bastea S., Glosli J. N. Ree F. H. Phase transformations of nanometer size carbon particles in shocked hydrocarbons and explosives. J. Chem. Phys. 2001, 115 (6), 2730–2736. https://doi.org//10.1063/1.1386418.
72. MaillardSchaller E., Kuettel O. M., Diederich L., Schlapbac L., Zhirnov V. V., Belobrov P. I. Surface properties of nanodiamond films deposited by electrophoresis on Si(100). Diam. Rel. Mater. 1999, 8 (2–5), 805–808. a href="https://doi.org/10.1016/S09259635(98)003811." " ">"ttps://doi.org/10.1016/S09259635(98)003811.
73. Bogatyreva G. P., Voloshin M. M., Malogolovets V. G., Gvyazdovskaya V. L., Ilnitskaya G. D. The effect of heat treatment on the surface condition of nanodiamond. J. Optoelectronics and Advanced Mater. 2000, 2 (5), 469–473.
74. Belobrov P. I., Gordeev S. K., Petrakovskaya E. A., Falaleev O. V. Paramagnetic properties of nanodiamond. Doklady Phizyks. 2001, 46 (7), 459–462. https://doi.org/10.1134/1.1390396.
75. Hu S., Sun J., Du X., Tian F., Jiang L. The formation of multiple twinning structure and photoluminescence of welldispersed NDs produced by pulsedlaser irradiation. Diam. Rel. Mater. 2008, 17 (2), 142–146. https://doi.org/10.1016/j.diamond.2007.11.009.
76. Krueger A. Nanodiamond. P. 329–389. Carbon Materials and Nanotechnology. Weinheim: WILEYVCH Verlag GmbH & Co. KGaA. 2010, 475 p. https://doi.org/10.1002/9783527629602.
77. Choi W. B., Cuomo J. J., Zhirnov V. V., Myers A. F., Hren J. J. Field emission from silicon and molybdenum tips coated with diamond powder by dielectrophoresis. Appl. Phys. Lett. 1996, 68 (5), 720–722. https://doi.org/10.1063/1.116585.
78. Ralchenko V., Karabutov A., Vlasov I., Frolov V., Konov V., Gordeev S., Zhukov S., Dementjev A. Diamondcarbon nanocomposites: application for diamond film deposition and field electron emission. Diam. Rel. Mater. 1999, 8 (8–9), 1496–1501. a href="https://doi.org/10.1016S09259635(99)000692." " ">"nbsp;https://doi.org/10.1016/S09259635(99)000692.
79. Alimova A. N., Chubun N. N., Belobrov P. I., Detkov P. Ya., Zhirnov V. V. Electrophoresis of nanodiamond powder for cold cathode fabrication. J. Vac. Sci. Technol. B. 1999, 17 (2), 715–718. https://doi.org/10.1116/1.590625.
80. Jiang N., Eguchi K., Noguchi S., Inaoka T., Shintani Y. Structural characteristics and field electron emission properties of nanodiamond/carbon films. J. Cryst. Growth. 2002, 236 (4), 577–582. a href="https://doi.org/10.106/S00220248(01)022199." " ">"nbsp;https://doi.org/10.1016/S00220248(01)022199.
81. Jiang T., Xu K., Ji S. FTIR studies on the spectral changes of the surface functional groups of ultradispersed diamond powder synthesized by explosive detonation after treatment in hydrogen, nitrogen, methane and air at different temperatures. J. Chem. Soc., Faraday Trans. 1996, 92 (18), 3401–3406. https://doi.org/10.1039/ft9969203401.
82. Show Y., Witek M. A., Sonthalia P., Swain G. M. Characterization and Electrochemical Responsiveness of BoronDoped Nanocrystalline Diamond ThinFilm Electrodes. Chem. Mater. 2003, 15 (4), 879–888. https://doi.org/10.1021/cm020927t.
83. Wang J., Butler J. E., Hsu D. S. Y., Nguyen C. T. C. CVD polycrystalline diamond highQ micromechanical resonators. Tech. Digest. 2002 IEEE Int. Micro Electro Mechanical Systems Conf., Las Vegas, Jan. 20–24. 2002, P. 657–660. https://doi.org/10.1109/MEMSYS.2002.984356.
84. Sekaric L., Parpia J. M., Craighead H. G., Feygelson T., Houston B. H., Butler J. E. Nanomechanical resonant structures in nanocrystalline Diamond. Appl. Phys. Lett. 2002, 81 (23), 4455–4457. https://doi.org/10.1063/1.1526941.
85. Philip J., Hess P., Feygelson T. Butler J. E., Chattopadhyay S., Chen K. H., Chen L. C. Elastic, mechanical, and thermal properties of nanocrystalline diamond films. J. Appl. Phys. 2003, 93 (4), 2164–2171. https://doi.org/10.1063/1.1537465.
86. Prado C., Flechsig G. U., Gr?ndler P., Foord J. S., Marken F., Compton R. G. Electrochemical analysis of nucleic acids at borondoped diamond electrodes. Analyst. 2002, 127 (3), 329–332. https://doi.org/10.1039/B111548K.
87. Halpern J. M., Xie S., Sutton G. P. Higashikubo B. T., Chestek C. A., Lu H., Chiel H. J., Martin H. B. Diamond electrodes for neurodynamics studies in Aplysia californica. Diam. Rel. Mater. 2006, 15 (2–3), 183–187. https://doi.org//10.1016/j.diamond. 2005.06.039.
88. MartinezHuitle C. A. Diamond microelectrodes and their applications in biological studies. Small. 2007, 3 (9), 1474–1476. https://doi.org/10.1002/smll.200700272.
89. Dolmatov V. Y. Detonationsynthesis nanodiamonds: synthesis, structure, properties and applications. Russian Chem. Rev. 2007, 76 (4), 339–360. https://doi.org/10.1070/RC2007v076n04ABEH003643.
90. Bogatyreva G. P., Marinich M. A., Gvyazdovskaya V. L. Diamond — an adsorbent of a new type. Diam. Rel. Mater. 2000, 9 (12), 2002–2005. a href="https://doi.org//10.1016/S0959635(00)003514" " ">"nbsp;https://doi.org//10.1016/S09259635(00)003514.
91. Fu C. C., Lee H. Y., Chen K., Lim T. S., Wu H. Y., Lin P. K., Wei P. K., Tsao P. H., Chang H. C., Fann W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. U.S.A. 2007, 104 (3), 727–732. https://doi.org/10.1073/pnas.0605409104.
92. Smith B. R., Inglis D. W., Sandnes B., Rabeau J. R., Zvyagin A. V., Gruber D., Noble C. J., Vogel R., ?sawa E., Plakhotnik T. FiveNanometer Diamond with Luminescent NitrogenVacancy Defect Centers. Small. 2009, 5 (14), 1649–1653. https://doi.org/10.1002/smll.200801802.
93. Smith B. R., Niebert M., Plakhotnik T., Zvyagin A. V. Transfection and imaging of diamond nanocrystals as scattering optical labels. J. Lumin. 2007, 127 (1), 260–263. https://doi.org//10.1016/ j.jlumin.2007.02.044.
94. Mohan N., Chen C. S., Hsieh H. H., Wu Y, C., Chang H. C. In Vivo Imaging and Toxicity Assessments of Fluorescent Nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010, 10 (9), 3692–3699. https://doi.org/10.1021/nl1021909.
95. Gruber A., Dr?benstedt A., Tietz C., Fleury L., Wrachtrup J., von Borczyskowski C. Scanning confocal optical microscopy and magnetic resonance on single defect centres. Science. 1997, 276 (5321), 2012–2014.: https://doi.org/10.1126/science.276.5321.2012.
96. Yu S. J., Kang M. W., Chang H. C., Chen K. M., Yu Y. C. Bright fluorescent NDs: No photobleaching and low cytotoxicity. J. Am. Chem. Soc. 2005. V. 127, P. 17604–17605. https://doi.org/10.1021/ja0567081.
97. Faklaris O., Garrot D., Joshi V., Boudou J. P., Sauvage T., Curmi P., Treussart F. Comparison of the photoluminescence properties of semiconductor quantum dots and nonblinking diamond nanoparticles. Observation of the diffusion of diamond nanoparticles in cells. J. Europ. Opt. Soc. Rap. Public. 2009, V. 4, P. 090351–090358. https://doi.org/10.2971/jeos.2009.09035.
98. Faklaris O., Garrot D., Joshi V., Druon F., Boudou J. P., Sauvage T., Georges P., Curmi P. A., Treussart F. Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway. Small. 2008, 4 (12), 2236–2239. https://doi.org/10.1002/smll.200800655.
99. Rabeau J. R., Reichart P., Tamanyan G., Jamieson D. N., Prawer S., Jelezko F., Gaebel T., Popa I., Domhan M., Wrachtrup J. Implantation of labelled single nitrogen vacancy centers in diamond using 15N. Appl. Phys. Lett. 2006, 88 (2), 0231131–0231133. https://doi.org/10.1063/1.2158700.
100. Aharonovich I., Castelletto S., Simpson D. A., Su C.H., Greentree A.D., Prawer S. Diamond based singlephoton emitters. Rep. Prog. Phys. 2011, 74 (7), 076501–0765028. :a href="https://doi.org/10.1088/00344885/74/7/076501""""https://doi.org/10.1088/00344885/74/7/076501.
101. Faklaris O., Joshi V., Irinopoulou T., Tauc P., Sennour M., Girard H., Gesset C., Arnault J. C., Thorel A., Boudou J. P., Curmi P. A., Treussart F. Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano. 2009, 3 (12), 3955–3962. https://doi.org/10.1021/nn901014j.
102. Chang B. M., Lin H. H., Su L. J., Lin W. D., Lin R. J., Tzeng Y. K., Lee R. T., Lee Y. C., Yu A. L., Chang H. C. Highly Fluorescent Nanodiamonds ProteinFunctionalized for Cell Labeling and Targeting. Adv. Funct. Mater. 2013, 23 (46), 5737–5745. https://doi.org/10.1002/adfm.201301075.
103. Grausova L., Kromka A., Burdikova Z., Eckhardt A., Rezek B., Vacik J., Haenen K., Lisa V., Bacakova L. Enhanced growth and osteogenic differentiation of human osteoblastlike cells on borondoped nanocrystalline diamond thin films. PLoS One. 2011, 6 (6), 1–17. https://doi.org/10.1371/journal.pone.0020943.
104. Morita Y., Takimoto T., Yamanaka H., Kumekawa K., Morino S., Aonuma S., Kimura T., Komatsu N. A Facile and Scalable Process for SizeControllable Separation of Nanodiamond Particles as Small as 4 nm. Small. 2008, 4 (12), 2154–2157. https://doi.org/10.1002/smll.200800944.
105. Kalish R., UzanSaguy C., Philosoph B., Richter V., Lagrange J. P. Gheeraert E., Deneuville A., Collins A. T. Nitrogen doping of diamond by ion implantation. Diam. Rel. Mater. 1997, 6 (2–4), 516–520. a href="https://doi.org//10.116/S09259635(96)006577." " ">"nbsp;https://doi.org//10.1016/S09259635(96)006577.
106. US 20120022231 A1, C07K17/00; B02C23/18; B32B9/04; C07H21/00; C09K11/65; B82Y20/00. Method for Manufacturing Cubic Diamond Nanocrystals. Curmi Patrick (Evry, FR), Boudou JeanPaul (ChatenayMalabry Cedex, FR), Thorel Alain (Evry Cedex, FR), Jelezko Fedor (Stuttgart, DE), Sennour Mohamed (Evry Cedex, FR). Filing Date: 03/08/2010. Publication Date: 01/26/2012. Application Number: 13/255691. http://www.google.com/patents/US20120022231.
107. EP1990313 A1, C01B31/06; C30B29/04; C09K11/65. Method to produce lightemitting nanoparticles of diamond. JeanPaul Boudou (92370 Chaville FR), Patrick Curmi (92140 Clarmant FR). Filing Date: 10/05/2007. Publication Date: 12/11/2008. Application Number:07290593.8. Bulletin 2008/46. http://www.google.com/patents/EP1990313A1?cl=en
108. Hu S., Tian F., Bai P., Cao S., Sun J., Yang J. Synthesis and luminescence of nanodiamonds from carbon black. Mater Sci Eng. B. 2009, 157 (1–3), 11–44. https://doi.org/10.1016/j.mseb.2008.12.001
109. Ting C. C., Young T. F., Jwo C. S. Fabrication of diamond nanopowder using microwave plasma torch technique. Int. J. Adv. Manuf. Technol. 2007, 34 (3–4), 316–322. :a href="https://doi.org/%210.1007/s0017000606036" t" r">&"bsp;https://doi.org/ 10.1007/s0017000606036.
110. Stacey A., Aharonovich I., Prawer S., Butler J. E. Controlled synthesis of high quality micro/nanodiamonds by microwave plasma chemical vapor deposition. Diam. Rel. Mater. 2009, 18 (1), 51–55. https://doi.org/10.1016/j.diamond.2008.09.020
111. Kennedy T. A., Colton J. S., Butler J. E., Linares R. C., Doering P. J. Long coherence times at 300 K for nitrogenvacancy center spins in diamond grown by chemical vapor deposition. Appl Phys Lett. 2003, 83 (20), 4190–4192. https://doi.org/10.1063/1.1626791.