ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 2, 2014
https://doi.org/10.15407/biotech7.02.034
Р. 34-45, Bibliography 46, English.
Universal Decimal classification: 577.112: 543.544.17(045)
APPLICATION OF IMMUNOGLOBULIN-BINDING PROTEINS A, G, L IN THE AFFINITY CHROMATOGRAPHY
О. V. Sviatenko1, O. B. Gorbatiuk2, О. А. Vasylchenko1
1National Aviation University, Kyiv, Ukraine
2State Institute of Genetic and Regenerative Medicine of National Academy of Medical Sciences of Ukraine, Kyiv
Proteins A, G and L are native or recombinant proteins of microbial origin that bind to mammalian immunoglobulins. Preferably recombinant variants of proteins A, G, L are used in biotechnology for affinity sorbents production. Сomparative characteristics of proteins A, G, L and affinity sorbents on the basis of them, advantages and disadvantages of these proteins application as ligands in the affinity chromatography are done. Analysis of proteins A, G, L properties is presented. Binding specificities and affinities of these proteins differ between species and antibody subclass. Protein А has high affinity to human IgG1, IgG2, IgG4, mouse IgG2a, IgG2b, IgG3, goat and sheep IgG2, dog, cat, guinea pig, rabbit IgG. Protein G binds strongly to human, mouse, cow, goat, sheep and rabbit IgG. Protein L has ability of strong binding to immunoglobulin kappa-chains of human, mouse, rat and pig. Expediency of application of affinity chromatography with usage of sorbents on the basis of immobilized proteins A, G, L are shown for isolation and purification of antibodies different classes. Previously mentioned method is used as an alternative to conventional methods of protein purification, such as ion-exchange, hydrophobic interactions, metal affinity chromatography, ethanol precipitation due to simplicity in usage, possibility of one-step purification process, obtaining of proteins high level purity, multiuse at maintenance of proper storage and usage conditions. Affinity sorbents on the basis of immobilized proteins A, G, L are used not only for antibodies purification, but also for extraction of different antibodies fractions from blood serum.
Key words: affinity chromatography, Staphylococcus protein А, peptostreptococcal protein L, protein G.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Bioaffinity chromatography. Turkovi J. (Ed.). Netherlands: Elsevier Science Publishers. 1993, P. 56–66.
2. Boi C., Dimartino S., Sarti G. C. Performance of a new protein a affinity membrane for the primary recovery of antibodies. Biotechnol. Progr. 2008, 24(3), 640–647.
https://doi.org/10.15407/biotech7.02.03410.1021/bp0704743
3. Hickstein H., Korten G., Bast R., Barz D., Templin R., Schneidewind J. M., Kittner C., Nizze H., Schmidt R. Protein A immunoadsorption (i. a.) in renal transplantation patients with vascular rejection. Transfus. Sci. 1998, 19(1), 53–57.
4. Graille M., Stura E. A., Corper A. L., Sutton B. J., Taussig M. J., Charbonnier J.-B., Silverman G. J. Crystal structure of a Staphylococcus aureus protein. A domain complexed with the Fab fragment of a human IgM antibody: Structural basis for recognition of B-cell receptors and superantigen activity. Proc. Natl. Acad. Sci (USA), 2000, 97(10), 5399–5404.
https://doi.org/10.15407/biotech7.02.03410.1073/pnas.97.10.5399
5. Qian J., Khoury G. E., Issa H., Al-Qaoud K., Shihab P., Lowe C. R. A synthetic Protein G adsorbent based on the multi-component Ugi reaction for the purification of mammalian immunoglobulins. J. Chromatogr. B. 2012, V. 898, P. 15–23.
https://doi.org/10.15407/biotech7.02.03410.1016/j.jchromb.2012.03.043
6. Pierce Biotechnology. Instructions: Pierce™ Ig Binding Proteins (Protein A, G, A/G and L). Rockford: Thermo Fisher Sci. Inc. 2013, P. 1–6.
http://dx.doi.org/10.1016/j.jchromb.2006.09.030
7. Pat. 6,548,639 B1 USА PCT/SE98/02036. IgG binding protein from Staphylococcus and nucleotide sequence encoding this protein. Frykberg L.; Uppsala. N 09/554,080, decl. 12.05.00, publ.15.04.03.
8. Nord K., Hober S., Linhult M. Protein A chromatography for antibody purification. J. Chromatogr. B. 2007, 848(1), 40–47.
9. Svyatenko О. V., Vasylchenko О. А., Vasilchenko K. K. Application of Staphylococcus protein A in the affinity chromatography and immunoadsorption. Problems of Environmental biotechnology. Available at http:jml.nau.edu.ua.index,php/ecobiotech/issue/current/showToc (accessed, February, 2013).
10. Gottschalk U. Process scale purification of antibodies. Gottschalk U. (Ed.). Hoboken: Wiley & Sons. 2009, P. 79–90.
11. Sjobring U., Bjorck L., Kastern W. Streptococcal Protein G Gene structure and protein binding properties. J. Biol. Chem. 1991, 366(1), 399–405.
12. Nitsche-Schmitz D. P., Johansson H. M., Sastalla I., Reissmann S., Frick I.-M., Chhatwal G. S. Group G Streptococcal IgG Binding Molecules FOG and Protein G Have Different Impacts on Opsonization by C1q. J. Biol. Chem. 2007, 282(24), 17530–17536.
https://doi.org/10.15407/biotech7.02.03410.1074/jbc.M702612200
13. Saha K., Bender F., Gizeli E. Comparative study of IgG binding to proteins g and a: nonequilibrium kinetic and binding constant determination with the acoustic waveguide device. Anal. Chem. 2003, 75(4), 835–842.
https://doi.org/10.15407/biotech7.02.03410.1021/ac0204911
14. Karanicolas J., Brooks III C. L. The origins of asymmetry in the folding transition states of protein L and protein G. Prot. Sci. 2002, 11(10), 2351–2361.
https://doi.org/10.1110/ps.0205402
15. Sadler D. P., Petrik E., Taniguchi Y., Pullen J. R., Kawakami M., Radford S. E., Brockwell D. J. Identification of a Mechanical Rheostat in the Hydrophobic Core of Protein L. J. Mol. Biol. 2009, 393(1), 237–248.
https://doi.org/10.1016/j.jmb.2009.08.015
16. Kim D. E., Fisher C., Baker D. A Breakdown of Symmetry in the Folding Transition State of Protein L. J. Mol. Biol. 2000, 298(5), 971–984.
https://doi.org/10.1006/jmbi.2000.3701
17. Pierce Antibody purification Available at: www.piercenet.com.
18. Roquea C. A., Taipaa M. A., Lowe C. R. An artificial protein L for the purification of immunoglobulins and Fab fragments by affinity chromatography A. J. Chromatogr. A. 2005, 1064(2), 157–167.
https://doi.org/10.1016/j.chroma.2004.11.102
19. Pierce Biotechnology. Instructions: Pierce® Protein L Agarose. Rockford: Thermo Fisher Sci. Inc. 2008, P. 1–4.
20. Snyder H. W., Cochran S. K., Balint J. P., Bertram J. H., Mittelman A., Guthrie T. H., Jones F. R. Experience With Protein A-Immunoadsorption in Treatment-Resistant Adult Immune Thrombocytopenic Purpura. Blood. 1992, 79(9), 2237–2245.
21. McMillan R. Chronic idiopathic thrombocytopenic purpura. Engl. J. Med. 1981, 304, 1135–1147.
https://doi.org/10.15407/biotech7.02.034
22. Clair St. W. E., Pisetsky D. S., Haynes B. F. Rheumatoid Arthritis. Clair St. W. E.(Ed.). Lippincott: Williams & Wilkins. 2004, P. 394–398.
23. Doesch A. O., Mueller S., Konstandin M., Celik S., Frankenstein L., Zugck C., Dengler T. J., Fleming T., Bierhaus A., Katus H. A. Effects of protein A immunoadsorption on methylglyoxal levels in patients with chronic dilated cardiomyopathy and diabetes mellitus. Appl. Cardiopulm. Pathophysiol. 2011, V. 15, P. 3–13.
24. Doesch A. O., Mueller S., Konstandin M., Celik S., Kristen A., Frankenstein L., Goeser S., Kaya Z., Zugck C., Dengler T. J., Katus H. A. Effects of Protein A Immunoadsorption in Patients with Chronic Dilated Cardiomyopathy. J. Clin. Apheresis. 2010, 25(6), 315–322.
https://doi.org/10.1002/jca.20263
25. Schwenger V., Morath C. Immunoadsorption in nephrology and kidney transplantation. Nephrol Dial Transplant. 2010, 25(8), 2407–2413.
https://doi.org/10.1093/ndt/gfq264
26. ?sterv?la E. Protein G Sepharose 4 Fast Flow. Uppsala: GE Healthcare Bio-Sci. AB, 2007, P. 2–6.
27. Schubert S., Freitag R. Comparison of ceramic hydroxy- and fluoroapatite versus Protein A/G-based resins in the isolation of a recombinant human antibody from cell culture supernatant. J. Chromatogr. A. 2007, 1142(1), 106–113.
https://doi.org/10.1016/j.chroma.2006.08.075
28. Gaza-Bulseco G., Hickman K., Sinicropi-Yao S., Hurkmans K., Chumsae C., Liu H. Effect of the conserved oligosaccharides of recombinant monoclonal antibodies on the separation by protein A and protein G chromatography. J. Chromatogr. 2009, 1216(12), 2382–2387.
https://doi.org/10.1016/j.chroma.2009.01.014
29. Shields R. L., Lai J., Keck R., O’Connell L. Y., Hong K., Meng Y. G., Weikert S. H., Presta L. G. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma Rin and antibody dependent cellular toxicity. J. Biol. Chem. 2002, 277(30), 26733–26740.
https://doi.org/10.1074/jbc.M202069200
30. Davies J., Jiang L., Pan L. Z., LaBarre M. J., Anderson D., Reff M. Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol. Bioeng. 2001, 74(4), 288–294.
https://doi.org/10.1002/bit.1119
31. Gaza-Bulseco G., Faldu S., Hurkmans K., Chumsae C., Liu H. Effect of methionine oxidation of a recombinant monoclonal antibody on the binding affinity to protein A and protein G. J. Chromatogr. B. 2008, 870(1), 55–62.
https:/doi.org/10.1016/j.jchromb.2008.05.045
32. Schenka J. A., Fettkec J., Lenza C., Albersd K., Mallwitzd F., Gajovic-Eichelmanne N., Ehrentreich-Furstere E., Kuschf E., Sellrie F. Secretory leukocyte protease inhibitor (SLPI) might contaminate murine monoclonal antibodies after purification on protein G. J. Biotechnol. 2012, 158(1-2), 34–35.
https://doi.org/10.1016/j.jbiotec.2011.12.025
33. Sennikov S. V., Golikova E. A., Kireev F. D., Lopatnikova J. A. Purification of human immunoglobulin G autoantibodies to tumor necrosis factor using affinity chromatography and magnetic separation. The Journal of Immunol. Meth. 2013. Available at: https://doi.org/10.1016/ j.jim.2013.01.012.
34. Patel S.Y., Ding L., Brown M. R., Lantz L., Gay T., Cohen S., Martyak L. A., Kubak B., Holland S. M. Anti-IFN-gamma autoantibodies in disseminated nontuberculous mycobacterial infections. J. Immunol. 2005, 175(7), 4769–4776.
https://doi.org/10.4049/jimmunol.175.7.4769
35. Puel A., Picard C., Lorrot M., Pons C., Chrabieh M., Lorenzo L., Mamani-Matsuda M., Jouanguy E., Gendrel D., Casanova J. L. Recurrent staphylococcal cellulitis and subcutaneous abscesses in a child with autoantibodies against IL-6. J. Immunol. 2008, 180(1), 647–654.
https://doi.org/10.4049/jimmunol.180.1.647
36. Uchida K., Nakata K., Trapnell B. C., Terakawa T., Hamano E., Mikami A., Matsushita I., Seymour J. F., Oh-Eda M., Ishige I., Eishi Y., Kitamura T., Yamada Y., Hanaoka K., Keicho N. High affinity autoantibodies specifically eliminate granulocyte–macrophage colony-stimulating factor activity in the lungs of patients with idiopathic pulmonary alveolar proteinosis. Blood. 2004, 103(3), 1089–1098.
https://doi.org/10.1182/blood-2003-05-1565
37. Pierce Protein AG Magnetic Beads Available at: http://www.piercenet.com/product/proteinag-magnetic-beads.
38. Roque A. C. A., Taipaa M. A., Lowe C. R. An artificial protein L for the purification of immunoglobulins and Fab fragments by affinity chromatograpy. J. Chromatogr. A. 2005, 1064(2), 157–167.
https://doi.org/10.1016/j.chroma.2004.11.102
39. Graille M., Stura E. A., Housden N. G., Beckingham J. A., Bottomley S. P., Beale D., Taussig M. J., Sutton B. J., Gore M. G.,Charbonnier J.-B. Complex between Peptostreptococcus magnus protein L and a human antibody reveals structural convergence in the interaction modes of Fab binding proteins. Structure. 2001, 9(8), 679–687.
https://doi.org/10.1016/S0969-2126(01)00630-X
40. Muzard J., Adi-Bessalem S., Juste M., Laraba-Djebari F., Aubrey N., Billiald P. Grafting of protein L-binding activity onto recombinant antibody fragments. Anal. Biochem. 2009, 388(2), 331–338.
41. Nilson B. H. K., Solomon A., Bjurck L., Еkerstrum B. Protein L from Peptostreptococcus magnus binds to the K light chain variable domain. J. Biol. Chem. 1992, 267(4), 2234–2239.
42. Housden N. G., Harrison S., Housden H. R., Thomas K.-A., Beckingham J. A., Roberts S. E., Bottomley S. P., Graille M., Stura E., Gore M. G. Observation and characterization of the interaction between a single immunoglobulin binding domain of protein L and two equivalents of human k-light chains. J. Biol. Chem. 2004, 279(10), 9370–9378.
https://doi.org/10.1074/jbc.M312938200
43. Cossins A. J., Harrison S., Popplewell A. G., Gore M. G. Recombinant production of a VL single domain antibody in Escherichia coli and analysis of its interaction with peptostreptococcal protein L. Prot. Expr. Purif. 2007, 51(2), 253–259.
https://doi.org/10.1016/j.pep.2006.07.013
44. Murphy, J. P. Duggleby C. J., M. A. Atkinson, Trowern A. R., Atkinson T., Goward C. R. The functional unit of Peptostreptococcal protein L. Mol. Microbiol. 1994, 12(6), 911–920.
https://doi.org/10.1111/j.1365-2958.1994.tb01079.x
45. Bottomley S. P., Beckingham J. A., Murphy J. P., Atkinson M., Sutton B. J., Gore M. G. Cloning, expression and purification of PpL-1, a kappa-chain binding protein, based upon protein L from Peptostreptococcus magnus. Bioseparation. 1995, 5(6), 359–367.
46. Harrison S. L., Housden N. G., Bottomley S. P., Cossins A. J., Gore M. G. Generation and expression of a minimal hybrid Ig-receptor formed between single domains from proteins L and G. Prot. Expr. Purif. 2008, 58(1), 12–22.
https://doi.org/10.1016/j.pep.2007.11.007