ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 1, 2014
https://doi.org/10.15407/biotech7.01.031
Р. 31-39, Bibliography 62, Ukrainian
Universal Decimal classification: 543.94
THE METHODS OF L-ARGININE ANALYSIS
Gayda G. Z.1, Stasyuk N. E.1, Gonchar M. V.1, 2
1Institute of Cell Biology of National Academy of Sciences of Ukraine, Lviv
2Insitute of Applied Biotechnology and Basic Sciences, Rzeszow University, Poland
Physicochemical and enzymatic methods of quantitative L-arginine estimation are described. A variety of detection procedures for L-arginine analysis have been developed. The majority of the frequently used approaches are marked by poor precision, low sensitivity and selectivity. These methods are time-consuming, expensive and require skilful labor techniques, so it needs to develop novel highly selective and sensitive ones for improvement of L-arginine monitoring in clinical diagnostics and food industry.
Experimental data concerning development and testing of effective enzymatic methods of L-arginine determination, including biosensors, are presented. All proposed methods are based on human liver arginase I isolated from the recombinant yeast strain Hansenula polymorpha NCYC-495 pGAP1-HsARG1 (leu2car1 Sc:LEU2). Arginase I (EC 3.5.3.1; L-arginine amidinohydrolase), a key enzyme of the urea cycle, catalyses the conversion of L-arginine to ornithine and urea.
An effectiveness of the proposed enzymatic methods for L-arginine assay, as amperometric and potentiometric biosensors so as enzymatic methods with spectrophotometric and fluorometric detection of the product, was demonstrated on the samples of commercial pharmaceuticals.
These methods seem to be prospective for L-arginine analyses in food industry (juices and wines) and in medicine, for diagnostics and drug control in blood serum under treatment of cancer malignances. Hence, the proposed L-Arg selective and simple methods would be convenient and useful in the future for routine clinical analysis and food quality control.
Key words: L-arginine analyses, biosensors, arginase I.
Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2014
References
1. Marini J. C. Arginine and ornithine are the main precursors for citrulline synthesis in mice. J. Nutr. 2012, 142(3), 572–580.
https://doi.org/10.3945/jn.111.153825
2. Yokoro M., Suzuki M., Murota K., Otsuka C., Yamashita H., Takahashi Y., Tsuji H., Kimoto M. Asymmetric dimethylarginine, an endogenous NOS inhibitor, metabolized in rat erythrocytes. Biosci. Biotechnol. Biochem. 2012, 76(7), 1334–1342.
https://doi.org/10.1271/bbb.120086
3. Yan X., Takahara M., Xie L., Gondo C., Setsu N., Oda Y., Takeuchi S., Tu Y., Moroi Y., Furue M. Arginine metabolism in soft tissue sarcoma. J. Dermatol. Sci. 2011, 61(3), 211–215.
https://doi.org/10.1016/j.jdermsci.2010.12.009
4. Brusilow S. W., Horwich A. L., Scriver C. R. The metabolic and molecular bases of inherited disease. 8-th ed. New York: McGraw-Hill. 2001, P. 1909–1963.
5. Rotondo R., Mastracci L., Piazza T., Barisione G., Fabbi M., Cassanello M., Costa R., Morandi B., Astigiano .S, Cesario A., Sormani M. P., Ferlazzo G., Grossi F., Ratto G. B., Ferrini S., Frumento G. Arginase ІІ is expressed by human lung cancer, but it neither induces immune suppression, nor affects disease progression. Int. J. Cancer. 2008, 123(5), 1108–1116.
6. Kotamtaju S., Williams C. L., Kalyanaraman B. Statininduced breast cancer cell death: role of inducible nitric oxide and arginase dependent pathways. Cancer Res. 2007, 67(15), 7386–7394.
https://doi.org/10.1158/0008-5472.CAN-07-0993
7. Lam T. L., Wong G. K., Chong H. C., Cheng P. N., Choi S. C., Chow T. L., Kwok S. Y., Poon R. T., Wheatley D. N., Lo W. H., Leung Y. C. Recombinant human arginase inhibits proliferation of human hepatocellular carcinoma by inducing cell cycle arrest. Cancer Lett. 2009, 277(1), 91–100.
https://doi.org/10.1016/j.canlet.2008.11.031
8. Glazer E. S., Stone E. M., Zhu C., Massey K. L., Hamir A. N., Curley S. A. Bioengineered human arginase I with enhanced activity and stability controls hepatocellular and pancreatic carcinoma. Transl. Oncol. 2011, 4(3), 138–146.
https://doi.org/10.1593/tlo.10265
9. Lam T. L., Wong G. K., Chow H. Y., Chong H. C., Chow T. L., Kwok S. Y., Cheng P. N., Wheatley D. N., Lo W. H., Leung Y. C. Recombinant human arginase inhibits the in vitro and in vivo proliferation of human melanoma by inducing cell cycle arrest and apoptosis. Pigment Cell Melanoma Res. 2011, 24(2), 366–376.
https://doi.org/10.1111/j.1755-148X.2010.00798.x
10. Munder M. Arginase: an emerging key player in the mammalian system. Br. J. Pharmacol. 2009, 158(3), 638–651.
https://doi.org/http://dx.doi.org/10.1111/j.1476-5381.2009.00291.x
11. Hernandez C. P., Morrow K., Lopez-Barcons L. A., Zabaleta J., Sierra R., Velasco C., Cole J., Rodriguez P. C. Pegilated arginase I: a potential therapeutic approach in T-ALL. Blood. 2010, 115(25), 5214–5221.
https://doi.org/10.1182/blood-2009-12-258822
12. Leu S. Y., Wang S. R. Clinical significance of arginase in colorectal cancer, Cancer. 1992, V. 70, P. 733–736.
13. Morales S. M. Cystinuria: diagnosis and therapeutic approach. An Sist. Sanit. Navar. 2011, 34(3), 453–461.
14. Zell J. A., Ignatenko N. A., Yerushalmi H. F., Ziogas A., Besselsen D. G., Gerner E. W., Anton-Culver H. Risk and risk reduction involving arginine intake and meat consumption in colorectal tumorigenesis and survival. Int. J. Cancer. 2007, 120(7), 459–468.
https://doi.org/10.1002/ijc.22311
15. Uthurry C. A., Lepe J. A. S., Lombardero J., Del Hierro G. J. R. Ethyl carbamate production by selected yeasts and lactic acid bacteria in red wine. Food Chem. 2006, V. 94, P. 262–270.
https://doi.org/10.1016/j.foodchem.2004.11.017
16. Spayd S. E., Wample R. L., Evans R. G., Stevens R. G, Seymour B. J., Nagel C. W. Nitrogen fertilization of white Riesling grapes in Washington. Must and wine composition. Am. J. Enol. Vitic. 1994, V. 45, P. 34–42.
17. Huang Z., Ough C. S. Effect of vineyard locations, varieties and rootstocks on the juice amino acid composition of several cultivars. Am. J. Enol. Vitic. 1989, V. 40, P. 135–139.
18. Parniak M. I., Lange G., Viswanatha T. Quantitative determination of monosubstituted guanidines: a comparative study of different procedures. J. Biochem. Biophys. Meth. 1983, 7(4), 267–276.
https://doi.org/10.1016/0165-022X(83)90051-9
19. Yamasaki R. B., Shimer D. A., Feeney R. E. Colorimetric determination of arginine residues in proteins by p-nitrophenylglyoxal. Anal. Biochem. 1981, 111(2), 220–266.
https://doi.org/10.1016/0003-2697(81)90557-1
20. Sakaguchi S. Colorimetric determination of arginine. J. Biochem. 1950, V. 5, P. 25–32.
21. Goldschmidt M. C., Lockhart B. M. Simplified rapid procedure for determination of agmatine and other guanidino containing compounds. Anal. Chem. 1971, V. 43, P. 1475–1479.
https://doi.org/10.1021/ac60305a026
22. Casadebaig F., Dupin J. P., Mesnard P. The Sakaguchi reaction: Analytical developments and application to drug control. Ann. Pharm. Fr. 1979, 37(7–8), 313–324.
23. Khramov V. A., Petrova L. M., Binova E. Modification of Sakaguchi by using 5-chloro-7-iodo-8-hydroxy quinoline. Lab. Delo. 1980, V. 11, P. 651–653.
24. Micklus M. J., Stein I. M. The colorimetric determination of mono- and disubstituted guanidines. Anal. Biochem. 1973, V. 54, P. 545–553.
https://doi.org/10.1016/0003-2697(73)90386-2
25. Sastry C. S. P., Tummuru M. K. Spectrophotometric determination of arginine in proteins. J. Food Chem. 1994, V. 15, P. 257–260.
https://doi.org/10.1016/0308-8146(84)90110-9
26. Wang H., Liang X. H., Zhao R. X., Feng L. D., Li H. Spectrophotometric determination of arginine in grape juice using 8-hydroquinoline. Agric. Sci. China. 2008, 7(10), 1210–1215.
https://doi.org/10.1016/S1671-2927(08)60166-2
27. Zhang L., Liu Y., Chen G. Simultaneous determination of allantoin, choline and L-arginine in Rhizoma Dioscoreae by capillary electrophoresis. J. Chromatogr. A. 2004, 1043(2), 317–321.
https://doi.org/10.1016/j.chroma.2004.06.003
28. Narezhnaya E. V., Askalepova O. I., Nikashina A. A., Krukier I. I., Pogorelova T. N. Determination of L-arginine in amniotic fluid by capillary disk electrophoresis. Zh. Anal. Chim. 2010, 65(12), 1309–1312. (In Russian).
29. Rong Y., Junru, H. Dayi C. Determination of L-arginine in drug by single sweep oscillopolarography. J. Sichuan Containing Educ. Coll. Med. Sci. 1999, V. 12, P. 1219–1236.
30. Alonso A., Almendral M. J., Baez M. D., Porras M . J., Alonso C. Enzyme immobilization on an epoxy matrix. Determination of L-arginine by flow-injection techniques. Anal. Chim. Acta. 1995, 308(1–3), 164–169.
https://doi.org/10.1016/0003-2670(94)00599-H
31. Chu K. M., Huang P. W., Pao Li H. Determination of arginine, asymmetrical dimethylarginine, and symmetrical dimethylarginine in human plasma by high performance liquid chromatography. J. Med. Sci. 2003, 23(4), 201–206.
32. Mayoral J. G., Alarc?n F. J., Mart?nez T. F., Barranco P., Noriega F. An Improved End-point Fluorimetric Procedure for the determination of low amounts of trypsin activity in biological samples using rhodamine-110-based substrates. Appl. Biochem. Biotechnol. 2010, V. 160, P. 1–8.
https://doi.org/10.1007/s12010-008-8520-9
33. Mira O. R. Quantitative determination of L-arginine by enzymatic End-Point analysis. J. Agric. Food Chem. 2001. 49(2), 549–552.
https://doi.org/10.1021/jf000522y
34. Gaede G., Grieshaber M. A rapid and specific enzymatic method for the estimation of L-arginine. Anal. Biochem. 1975, 66(2), 393–399.
https://doi.org/10.1016/0003-2697(75)90606-5
35. Miti? S. S., Mileti? G., Pavlovi? A. N., Tosic S. B., Velimirovi? D. S. Development and evaluation of a kinetic-spectrophotometric method for determination of arginine. J. Chin. Chem. Soc. 2007, V. 54. P. 47–54.
https://doi.org/10.1002/jccs.200700009
36. Cohen S. I. The determination of arginine released in human blood plasma after plasminogen activation. Use of a cation-exchange resin. Arch. Biochem. Biophys. 1960, V. 86, P. 166–168.
37. Gange M. E., Francis P. S., Costin J. W., Barnett N. W., Lewis S. W. Determination of arginine in dietary supplements. J. Sci. Food Agric. 2005, V. 85, Р. 1217–1221.
38. Costin J., Paul F., Lewis S. Selective determination of amino acids using flow injection analyses coupled with chemiluminescence detection. Anal. Chim. Acta. 2003, 408(1), 67–77.
https://doi.org/10.1016/S0003-2670(02)01645-8
39. Lobenhoffer J. M., Krug O., Bode-Bogerh S. M. Determination of arginine and asymmetric dimethylarginine (ADMA) in human plasma by liquid chromatography/mass spectrometry with the isotope dilution technique. J. Mass Spectrom. 2004, V. 39, P. 1287–1294.
https://doi.org/10.1002/jms.684
40. Notenboom C. D., Veerdonk F. C. G., Kamer J. C. A. A fluorescent modification of the Sakaguchi reaction on arginine. J. Histochem. 1967, V. 18, P. 117–121.
https://doi.org/10.1007/BF00305854
41. Rechnitz G. A., Kobos R. K., Riechel S. J., Gebauer C. R. A bioselective membrane electrode prepared with living bacterial cells. Anal. Chim. Acta. 1977, V. 94, P. 357–365.
42. Grobler S. R., Basson N., Van Wyk C. W. Bacterial electrode for L-arginine. Talanta. 1982, V. 29, P. 49–51.
43. Botre F., Mazzey F. Interactions between carbonic anhydrase and some decarboxylating enzymes as studied by a new bioelectrochemical approach, Bioelectrochem. Bioenerg. 1999, 48(2), 463–467.
https://doi.org/10.1016/S0302-4598(99)00004-5
44. Nikolelis D. P., Hadjiioannou T. P. Construction of an arginine enzyme electrode and determination of arginine in biological materials. Anal. Chim. Acta. 1983, V. 147, P. 33–39.
https://doi.org/10.1016/0003-2670(83)80070-1
45. Karacaoglu S., Timur S., Telefoncu A. Arginine selective biosensor based on arginase-urease immobilized in gelatin. Artif. Cells Blood Subst. Immob. Biotechnol. 2003, V. 31, P. 357–363.
https://doi.org/10.1081/BIO-120023164
46. Komaba S., Fujino Y., Matsuda T., Osaka K., Satoh I. Biological determination of Ag (I) ion and arginine by using the composite film of electroinactive polypyrrole and polyion complex. Sens. Actuator. B. Chem. 1998, V. 52, P. 78–83.
https://doi.org/10.1016/S0925-4005(98)00259-7
47. Ivnitskii D. M., Rishpon J. Biosensor based on direct detection of membrane potential induced by immobilized hydrolytic enzymes. Anal. Chim. Acta. 1993, V. 282, P. 517–525.
https://doi.org/10.1016/0003-2670(93)80115-2
48. Koncki R., Walcerz I., Ruckruh F., Glab S. Bienzymatic potentiometric electrodes for creatine and L-arginine determination. Anal. Chim. Acta. 1996, V. 333, P. 215–222.
https://doi.org/10.1016/0003-2670(96)00266-8
49. Lvova L., Legin A., Vlasov Y., Cha G. S., Nam H. Multicomponent analysis of Korean green tea by means of disposable all-solid-state potentiometric electronic tongue microsystem. Sens. Actuator. B: Chem. 2003, V. 95, P. 391–395.
https://doi.org/10.1016/S0925-4005(03)00445-3
50. Kaur G. http://hdl.handle.net/10603/2897
51. Saiapina O. Y., Dzyadevych S. V., Jaffrezic-Renault N., Soldatkin O. P. Development and optimization of a novel conductometric bienzyme biosensor for L-arginine determination. Talanta. 2012, V. 92, P. 58–64.
https://doi.org/10.1016/j.talanta.2012.01.041
52. Liu D., Yin A., Ge K., Chen K., Nie L., Yao S. Enzymatic analysis of arginine with the SAW/conductance sensor system. Enzym. Microb. Tech. 1995, V. 17, P. 856–863.
https://doi.org/10.1016/0141-0229(95)00010-3
53. Stasyuk N., Smutok O., Gayda G., Vus B., Gonchar M., Kovalchuk Ye. Bienzyme L-arginine-selective amperometric biosensor based on ammonium-sensing polyaniline-modified electrode. Biosens. Bioelectron. 2012, 37(1), P. 46–52.
https://doi.org/10.1016/j.bios.2012.04.031
54. Stasyuk N., Smutok O., Gayda G., Kovalchuk Y., Gonchar M. A new bienzyme potentiometric sensor for arginine analysis based on recombinant human arginase I and commercial urease. J. Mater. Sci. Eng. A. 2011, V. 1, P. 819–827.
55. Saiapina O. Y., Dzyadevych S. V., Soldatkin O. P., Stasyuk N. Ye., Gayda G. Z., Gonchar M. V. Сonductometric biosensor system for L-arginine determination. Patent u201104302, MPK51 G01N 33/00 (2011.01). № 64025; declared 08.04.2011; published 25.10.2011; Bulletin № 20. (In Ukrainian).
56. Stasyuk N. Ye., Gayda G. Z., Kovalchuk Y. P.,Gonchar M. V. Human arginase I from the recombinant yeast Hansenula polymorpha: isolation and characterization. Ukr. Biochem. J. 2010, 82(6), 14–21. (In Ukrainian).
57. Stasyuk N., Gayda G., Gayda A., Stasyk O. V., Каrpiak V. V., Kovalchuk Y. P., Gonchar M. V. The synthesis of affinity sorbents for purification of human arginase I from the recombinant yeast Hansenula polymorpha. Pratsi HTShA. Ser. “Khimiia i biokhimiia”. 2011, V. 28, P. 139–149. (In Ukrainian).
58. Stasyuk N., Serkiz R., Gayda G., Kovalchuk Y. P., Gonchar M. V. Synthesis and characteristics of silver and gold nanoparticles for immobilization of recombinant arginase Visn. Lviv. Univ. Ser. “Khim.”. 2011, V. 52, P. 261–267. (In Ukrainian).
59. Stasyuk N., Serkiz R., Mudry S., Gayda G., Zakalskiy A., Kovalchuk Y., Gonchar M., Nisnevich M. Recombinant human arginase I immobilized on gold and silver nanoparticles: preparation and properties. Nanotech. Develop. 2011, V. 1:e3, P. 11–15.
https://doi.org/10.4081/nd.2011.e3
60. Stasyuk N. Ye., Gayda G. Z., Gonchar M. V., Kovalchuk Y. An amperometeric chemosensor for ammonium ions detection. Visnik Kharkiv. Nats.Un-tu. Ser. “Khim”. 2012, 21 (44), N 1026, P. 258–263. (In Ukrainian).
61. Stasyuk N. Ye., Gayda G. Z., Gayda A. V., Gonchar M.V. A new enzymatic method for L-arginine assay. Ukr. Biorg. Acta. 2012, V. 1, P. 31–37. (In Ukrainian).
62. Stasyuk N., Gaida G., Gonchar M. L-arginine assay with the use of arginase I. Prikladnaya Biochem. i Microbiol. 2013, 49(5), 529–534. (In Russian).