Select your language

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

1 2014 

"Biotechnologia Acta" v. 7, no 1, 2014
https://doi.org/10.15407/biotech7.01.009
Р. 9-30, Bibliography 175, Ukrainian.
Universal Decimal classification: 759.873.088.5:661.185

MICROBIAL SURFACTANTS. I. GLYCOLIPIDS

Pirog T. Р. Konon A. D.

National University of Food Technologies, Kyiv, Ukraine

The review is devoted to surface-active glycolipids. The general characteristics, the physiological role of the rhamnolipids, trehalose lipids, sophorolipids, mannosylerythritol lipids and their traditional producers — the representatives of the genera Pseudozyma, Pseudomonas, Rhodococcus and Candida are given. The detailed analysis of the chemical structure, the stages of the biosynthesis and the regulation of some low molecular glycolipids are done. The own experimental data concerning the synthesis intensification, the physiological role and the practical use of Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405 surfactants, which are a complex of the glyco-, phospho-, amino- and neutral lipids (glycolipids of all strains are presented by trehalose mycolates) are summarized.

It was found that R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 surfactants have protective, antimicrobial and antiadhesive properties. It was shown that R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 surfactants preparation of cultural liquid intensified the degradation of oil in water due to the activation of the natural petroleum-oxidizing microflora.

Key words: surfactants, glycolipids, biosynthesis, industrial waste.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2014

References

1. Banat I. M., Franzetti A., Gandolfi I., Bestetti G., Martinotti M. G., Fracchia L., Smyth T. J., Marchant R. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 2010, 87(2), 427–444.
 https://doi.org/10.1007/s00253-010-2589-0

2. Bergstrom S., Theorell H., Davide H. Pyolipic acid. A metabolic product of Pseudomonas pyocyanea active against Mycobacterium tuberculosis. Arch. Biochem. Biophys. 1946, V. 10, Р. 165–166.

3. Jarvis F. G., Johnson M. J. A glyco-lipide produced by Pseudomonas aeruginosa. J. Am. Chem. Soc. 1949, 71(12), 4124–4126.

4. Lang S. Biological amphiphiles (microbial biosurfactants). Curr. Opin. Colloid. Interface Sci. 2002, 7(1–2), 12–20.
  https://doi.org/10.1016/S1359-0294(02)00007-9

5. Makkar R. S., Cameotra S. S., Banat I. M. Advances in utilization of renewable substrates for biosurfactant production. AMB Express. 2011. https://doi.org/10.1186/2191-0855-1-5.

6. Marchant R., Banat I. M. Biosurfactants: a sustainable replacement for chemical sur­fac­tants. Biotechnol. Lett. 2012, 34(9), 1597–1605.
  https://doi.org/10.1007/s10529-012-0956-x

7. Mulligan C. N. Environmental applications for biosurfactants. Environ. Pollut. 2005, 133(2), 183–198.
 https://doi.org/10.1016/j.envpol.2004.06.009

8. Nguyen T. T., Sabatini D. A. Characterization and emulsification properties of rhamnolipid and sophorolipid biosurfactants and their applications. Int. J. Mol. Sci. 2011, 12(2), 1232–1244.
https://doi.org/10.3390/ijms12021232

9. Pacwa-Plociniczak M., Plaza G. A., Piotrowska-Seget Z., Cameotra S. S. Environmental applications of biosurfactants: recent advances. Int. J. Mol. Sci. 2011, 12(1–2), 633–654.
 https://doi.org/10.3390/ijms12010633

10. Rodrigues L. R. Inhibition of bacterial adhesion on medical devices, Adv. Exp. Med. Biol. 2011, V. 715, Р. 351–367.

11. Ron E. Z., Rosenberg E. Biosurfactants and oil bioremediation. Curr. Opin. Biotechnol. 2002, 13(3), 249–252.
 https://doi.org/10.1016/S0958-1669(02)00316-6

12. Singh A., Van Hamme J. D., Ward O. P. Surfactants in microbiology and biotechnology. Part 2 Application aspects. Biotechnol. Adv. 2007, 25(1), 99–121.
  https://doi.org/10.1016/j.biotechadv.2006.10.004

13. Lang S., Philp J. C. Surface-active lipids in rhodococci. Antonie. Van. Leeuwenhoek. 1998, 74(1–3), 59–70.
 https://doi.org/10.1023/A:1001799711799

14. Rosenberg E., Ron E. Z. High- and lowmolecular-mass microbial surfactants. Appl. Microbiol. Biotechnol. 1999, 52(2), 154–162.
https://doi.org/10.1007/s002530051502

15. Van Hamme J. D., Singh A., and Ward O. P. Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol. Adv. 2006, 24(6), 604–620.
 https://doi.org/10.1016/j.biotechadv.2006.08.001

16. Arutchelvi J. I., Bhaduri S., Uppara P. V., Doble M. Mannosylerythritol lipids: a review. J. Ind. Microbiol. Biotechnol. 2008, 35(12), 1559–1570.
 https://doi.org/10.1007/s10295-008-0460-4

17. Van Bogaert I. N. A., Zhang J., Soetaert W. Microbial synthesis of sophorolipids. Proc. Biochem. 2011, 46(4), 821–833.
 https://doi.org/10.1016/j.procbio.2011.01.010

18. M?ller M. M., Hausmann R. Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl. Microbiol. Biotechnol. 2011, 91(2), 251–264.
 https://doi.org/10.1007/s00253-011-3368-2

19. Abdel-Mawgoud A. M., Lepine F., Deziel E. Rhamnolipids: diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. Proc. Biochem. 2010, 86(5), 1323–1336.
https://doi.org/10.1007/s00253-010-2498-2

20. Abalos A., Pinazo A., Infante M., Casals M., Garc?a F., Manresa A. Physicochemical and antimicrobial properties of new rhamno­lipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir. 2001, 17(5), 1367–1371.
 https://doi.org/10.1021/la0011735

21. Nguyen T. T., Youssef N. H., Mcіnerney M. J., Sabatini D. A. Rhamnolipid biosurfactant mixtures for environmental remediation. Water Res. 2008, 42(6–7), 1735–1743.

22. Darvishi P., Ayatollahi S., Mowla D., Niazi A. Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Coll. Surf. B. Biointerfaces. 2011, 84(2), 292–300.

23. Dusane D. H., Dam S., Nancharaiah Y. V., Kumar A. R., Venugopalan V. P., Zinjarde S. S. Disruption of Yarrowia lipolytica biofilms by rhamnolipid biosurfactant. Aquat. Biosyst. 2012.
https://doi.org/10.1186/2046-9063-8-17.

24. Vatsa P., Sanchez L., Clement C., Baillieul F., Dorey S. Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int. J. Mol. Sci. 2010, 11(12), 5095–5108.
 https://doi.org/10.3390/ijms11125095

25. Marsudi S., Unno H., Hori K. Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 2008,78(6), 955–961.
 https://doi.org/10.1007/s00253-008-1388-3

26. Wei Y.-H., Chou C.-L., Chang J.-S. Rhamno­lipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem. Eng. J. 2004, 27(2), 146–154.
https://doi.org/10.1016/j.bej.2005.08.028

27. Aguirre-Ram?rez M., Medina G., Gonz?lez-Valdez A., Grosso-Becerra V., Sober?n-Ch?vez G. The Pseudomonas aeruginosa rmlBDAC operon, encoding dTDP-L-rhamnose biosynthetic enzymes, is regulated by the quorum-sensing transcriptional regulator RhlR and the alternative sigma factor ?S. Microbiology. 2012, 158(4), 908–916.
 https://doi.org/10.1099/mic.0.054726-0

28. Toribio J., Escalante A. E., Soberon-Chavez G. Rhamnolipids: production in bacteria other than Pseudomonas aeruginosa. Eur. J. Lipid Sci. Technol. 2010, 112(10), 1082–1087.
https://doi.org/10.1002/ejlt.200900256

29. Chrzanowski L., Lawniczak L., Czaczyk K. Why do microorganisms produce rhamno­lipids? World J. Microbiol. Biotechnol. 2012, 28(2), 401–419.
 https://doi.org/10.1007/s11274-011-0854-8

30. Nitschke M., Costa S. G., Contiero J. Structure and applications of a rhamnolipid surfactant produced in soybean oil waste. Appl. Biochem. Biotechnol. 2010, 160(7), 2066–2074.
С https://doi.org/10.1007/s11274-011-0854-8

31. Pereira J. F., Gudi?a E. J., D?ria M. L., Domingues M. R., Rodrigues L. R., Teoxeira J. A., Coutinho J. A. Characterization by electrospray ionization and tandem mass spectrometry of rhamnolipids produced by two Pseudomonas aeruginosa strains isolated from Brazilian crude oil. Eur. J. Mass Spectrom. 2012, 18(4), 399–3406.
https://doi.org/10.1007/s11274-011-0854-8https://doi.org/10.1255/ejms.1194

32. Sha R., Jiang L., Meng Q., Zhang G., Song Z. Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens. J. Basic. Microbiol. 2012, 52(4), Р. 458–466.

33. Wadekar S. D., Kale S. B., Lali A. M., Bhowmick D. N., Pratap A. P. Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source. Prep. Biochem. Biotechnol. 2012, 42(3), 249–266.

34. Edwards J. R., Hayashi J. A. Structure of a rhamnolipid from Pseudomonas aeruginosa . Arch. Biochem. Biophys. 1965, 111(2), 415–421.

35. Hauser G., Karnovsky M. L. Studies on the production of glycolipide by Pseudomonas aeruginosa. J. Bacteriol. 1954, 68(6), 645–654.

36. Hirayama T., Kato I. Novel methyl rhamno­lipids from Pseudomonas aeruginosa. FEBS Lett. 1982, 139(1), 81–85.
 https://doi.org/10.1016/0014-5793(82)80492-4

37. Ito S., Honda H., Tomita F., Suzuki T. Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C 12 , C 13 and C 14 fractions). J. Antibiot. 1971, 24(12), 855–859.
 https://doi.org/10.7164/antibiotics.24.855

38. Syldatk C., Lang S., Wagner F., Wray V., Witte L. Chemical and physical charac­te­rization of four interfacial-active rhamno­lipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Zh. Naturforsch. C. 1985, 40(1–2), 51–60.

39. Rendell N. B., Taylor G. W., Somerville M., Todd H., Wilson R., Cole P. J. Characterisation of Pseudomonas rhamnolipids. Biochim. Biophys. Acta. 1990, 1045(2), 189–193.
 https://doi.org/10.1016/0005-2760(90)90150-V

40. Haba E., Abalos A., J?uregui O., Espuny M. J.,Manresa A. Use of liquid chromato­graphy-mass spectroscopy for studying the composition and properties of rhamnolipids produced by different strains of Pseudomonas aeruginosa. J. Surfact. Deterg. 2003, 6(2), 155–161.
 https://doi.org/10.1007/s11743-003-0260-7

41. Sharma A., Jansen R., Nimtz M., Johri B. N.,Wray V. Rhamnolipids from the rhizosphere bacterium Pseudomonas sp. GRP(3) that reduces damping-off disease in Chilli and tomato nurseries. J. Nat. Prod. 2007, 70(6) 941–947.
 https://doi.org/10.1021/np0700016

42. Gunther N. W., Nu?ez A., Fett W., Solaiman D. K. Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl. Environ. Microbiol. 2005, 71(5), 2288–2293.
  https://doi.org/10.1128/AEM.71.5.2288-2293.2005

43. Guo Y. P., Hu Y. Y., Gu R. R., Lin H. Characterization and micellization of rhamnolipidic fractions and crude extracts produced by Pseudomonas aeruginosa mutant MIG-N146. J. Coll. Interface Sci. 2009, 331(2), 356–363.
 https://doi.org/10.1016/j.jcis.2008.11.039

44. Manso Pajarron A., De Koster C. G., Heerma W., Schmidt M., Haverkamp J. Structure identification of natural rhamnolipid mixtures by fast atom bombardment tandem mass spectrometry. Glycoconj. J. 1993, 10(3), 219–226.
https://doi.org/10.1007/BF00702203

45. Andr? J., Rademann J., Howe J., Koch M. H., Heine H., Z?hringer U., Brandenburg K. Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and biophysical characterization. Biol. Chem. 2006, 387(3), 301–310.
 https://doi.org/10.1515/BC.2006.040

46. Howe J., Bauer J., Andr? J., Schromm A. B., Ernst M., R?ssle M., Z?hringer U., Rademann J., Brandenburg K. Biophysical characterization of synthetic rhamnolipids. FEBS J. 2006, 273(22), 5101–5112.
https://doi.org/10.1111/j.1742-4658.2006.05507.x

47. Dubeau D., D?ziel E., Woods D. E., L?pine F. Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol. 2009. doi: 10.1186/1471-2180-9-263.
https://doi.org/10.1186/1471-2180-9-263

48. Gunther N. W., Nu?ez A., Fortis L., Solaiman D. K. Proteomic based investigation of rhamnolipid production by Pseudomonas chlororaphis strain NRRL B-30761. J. Ind. Microbiol. Biotechnol. 2006, 33(11), 914–920.
  https://doi.org/10.1007/s10295-006-0169-1

49. Onbasli D., Aslim B. Biosurfactant production in sugar beet molasses by some Pseudomonas spp. J. Environ. Biol. 2009, 30(1), 161–163.

50. Rooney A. P., Price N. P., Ray K. J., Kuo T. M. Isolation and characterization of rhamno­lipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol. Lett. 2009, 295(1), 82–87.
 https://doi.org/10.1111/j.1574-6968.2009.01581.x

51. Nayak A. S., Vijaykumar M. H., Karegoudar T. B. Characterization of biosurfactant produced by Pseudoxanthomonas sp. PNK-04 and its application in bioremediation. Int. Biodeterior. Biodegrad. 2009, 63(1), 73–79.
  https://doi.org/10.1016/j.ibiod.2008.07.003

52. Vasileva-Tonkova E., Gesheva V. Biosurfactant production by antarctic facultative anaerobe Pantoea sp. during growth on hydrocarbons. Curr. Microbiol. 2007, 54(2), 136–141.
 https://doi.org/10.1007/s00284-006-0345-6

53. Abouseoud M., Yataghene A., Amrane A., Maachi R. Biosurfactant production by free and alginate entrapped cells of Pseudomonas fluorescens. J. Ind. Microbiol. Biotechnol. 2008, 35(11), 1303–1308.
 https://doi.org/10.1007/s10295-008-0411-0

54. Celik G. Y., Aslim B., Beyatli Y. Enhanced crude oil biodegradation and rhamnolipid production by Pseudomonas stutzeri strain G11 in the presence of Tween-80 and Triton X-100. J. Environ. Biol. 2008, 29(6), 867–870.

55. Oliveira F. J. S., Vazquez L., de Campos N. P., de Franca F. P. Production of rhamno­lipids by a Pseudomonas alcaligenes strain. Proc. Biochem. 2009, 44(4), 383–389.
 https://doi.org/10.1016/j.procbio.2008.11.014

56. Ohlendorf B., Lorenzen W., Kehraus S., Krick A., Bode H. B., K?nig G. M. Myxotyrosides A and B, unusual rhamnosides from Myxococcus sp. J. Nat. Prod. 2009, 72(1), Р. 82–86.

57. Christova N., Tuleva B., Lalchev Z., Jordanova A., Jordanov B. Rhamnolipid biosurfactants produced by Renibacterium salmoninarum 27BN during growth on n-hexadecane. Z. Naturforsch. C. 2004, 59(1–2), 70–74.
 https://doi.org/10.1515/znc-2004-1-215

58. Vasileva-Tonkova E., Gesheva V. Glycolipids produced by Antarctic Nocardioides sp. during growth on n-paraffin. Process Biochem. 2005, 40(7), 2387–2391.
 https://doi.org/10.1016/j.procbio.2004.09.018

59. Lee M., Kim M. K., Vancanneyt M., Swings J., Kim S. H., Kang M. S., Lee S. T. Tetra­genococcus koreensis sp. nov., a novel rhamnolipid-producing bacterium. Int. J. Syst. EV. Microbiol. 2005, 55(4), 1409–1413.

60. Reis R. S., Pereira A. G., Neves B. C., Frei­re D. M. Gene regulation of rhamnolipid production in Pseudomonas aeruginosa: a review. Bioresour. Technol. 2011, 102(11), 6377–6384.
https://doi.org/10.1016/j.biortech.2011.03.074

61. Sober?n-Ch?vez G., L?pine F., D?ziel E. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 2005, 68(6), 718–725.
  https://doi.org/10.1007/s00253-005-0150-3

62. D?ziel E., L?pine F., Milot S., Villemur R. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology. 2003, 149(8), 2005–2013.
https://doi.org/10.1099/mic.0.26154-0

63. Zhu K., Rock C. O. RhlA converts beta-hydroxy­acyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J. Bacteriol. 2008, 190(9), 3147–3154.
 https://doi.org/10.1128/JB.00080-08

64. Ochsner U. A., Fiechter A., Reiser J. Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J. Biol. Chem. 1994, 269(31), 19787–19795.

65. Rahim R., Ochsner U. A., Olvera C., Graninger M., Messner P., Lam J. S., Sober?n-Ch?vez  G. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for dirhamnolipid biosynthesis. Mol. Microbiol. 2001, 40(3), 708–718.
 https://doi.org/10.1046/j.1365-2958.2001.02420.x

66. Pham T. H., Webb J. S., Rehm B. H. The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology. 2004, 150(10), 3405–3413.
https://doi.org/10.1099/mic.0.27357-0

67. Allard S., Giraud M. F., Whitfield C., Graninger M., Messner P., Naismith J. H. The crystal structure of dTDP-D-Glucose 4,6-dehydratase (RmlB) from Salmonella enterica serovar Typhimurium, the second enzyme in the dTDP-l-rhamnose pathway. J. Mol. Biol. 2001, 307(1), 283–295.
https://doi.org/10.1006/jmbi.2000.4470

68. Graninger M., Nidetzky B., Heinrichs D. E., Whitfield C., Messner P. Characterization of dTDP-4-dehydrorhamnose 3,5-epimerase and dTDP-4-dehydrorhamnose reductase, required for dTDP-L-rhamnose biosynthesis in Salmonella enterica serovar Typhimurium LT2. J. Biol. Chem. 1999, 274(35), 25069–25077.
  https://doi.org/10.1074/jbc.274.35.25069

69. Rehm B. H., Mitsky T. A., Steinb?chel A. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl. Environ. Microbiol. 2001, 67(7), P. 3102–3109.
 https://doi.org/10.1128/AEM.67.7.3102-3109.2001

70. Miller D. J ., Zhang Y. M., Rock C. O., White S. W. Structure of RhlG, an essential beta-ketoacyl reductase in the rhamnolipid biosynthetic pathway of Pseudomonas aeruginosa. J. Biol. Chem. 2006, 281(26), 18025–18032.
https://doi.org/10.1074/jbc.M601687200

71. Campos-Garc?a J., Caro A. D., N?jera R., Miller-Maier R. M., Al-Tahhan R. A., Sober?n-Ch?vez G. The Pseudomonas aeruginosa rhlG gene encodes an NADPH-dependent beta-ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J. Bacte­riol. 1998, 180(17), 4442–4451.

72. Byrd M. S., Sadovskaya I., Vinogradov E., Lu H., Sprinkle A. B., Richardson S. H., Ma L., Ralston B., Parsek M. R., Anderson E. M., Lam J. S., Wozniak D. J. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol. Microbiol. 2009, 73(4), 622–638.
 https://doi.org/10.1111/j.1365-2958.2009.06795.x

73. Lindhout T., Lau P. C., Brewer D., Lam J. S. Truncation in the core oligosaccharide of lipopolysaccharide affects flagella-mediated motility in Pseudomonas aeruginosa PAO1 via modulation of cell surface attachment. Microbiology. 2009, 155(10), 3449–3460.
 https://doi.org/10.1099/mic.0.030510-0

74. Rahim R., Burrows L. L., Monteiro M. A., Perry M. B., Lam J. S. Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology. 2000, 146(11), 2803–2814.

75. Blankenfeldt W., Giraud M. F., Leonard G., Rahim R., Creuzenet C., Lam J. S., Nai­smith J. H. The purification, crystallization and preliminary structural characterization of glucose-1-phosphate thymidylyl­transferase (RmlA), the first enzyme of the dTDP-L-rhamnose synthesis pathway from Pseudomonas aeruginosa. Acta Crystallogr. D. Biol. Crystallogr. 2000, 56(11), 1501–1504.
 https://doi.org/10.1107/S0907444900010040

76. Williams P., C?mara M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr. Opin. Microbiol. 2009, 12(2), 182–191.
 https://doi.org/10.1016/j.mib.2009.01.005

77. D?ziel E., Gopalan S., Tampakaki A. P., L?pine F., Padfield K. E., Saucier M., Xiao G., Rahme L. G. The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol. Microbiol. 2005, 55(4), 998–1014.
 https://doi.org/10.1111/j.1365-2958.2004.04448.x

78. Abalos A., Maximo F., Manresa M. A., Bastida J. Utilization of response surface methodology to optimize the culture media for the production of rhamnolipids by Pseudomonas aeruginosa AT10. J. Chem. Technol. Biotechnol. 2002, 77(7), 777–784.
 https://doi.org/10.1002/jctb.637

79. Costa S. G. V., Nitschke M., L?pinec F., D?ziel E. Structure, properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L2-1 from cassava wastewater. Proc. Biochem. 2010, 45(9), 1511–1516.
 https://doi.org/10.1016/j.procbio.2010.05.033

80. De Lima C. J., Fran?a F. P., S?rvulo E. F., Resende M. M., Cardoso V. L. Enhancement of rhamnoplipid production in residual soybean oil by an isolated strain of Pseudomonas aeruginosa. Appl. Biochem. Biotechnol. 2007, 137–140(1–12), 463–470.

81. Lee K. M., Hwang S., Ha S. D., Jang J.-H., Lim D.-J., Kong J.-Y. Rhamnolipid production in batch and fed-batch fermentation using Pseudomonas aeruginosa BYK-2 KCTC 18012P. Biotechnol. Bioprocess Eng. 2007, 9(4), 267–273.
https://doi.org/10.1007/BF02942342

82. M?ller M. M., H?rmann B., Kugel M., Syldatk C., Hausmann R. Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid overproducer strains DSM 7108 and DSM 2874. Appl. Microbiol. Biotechnol. 2011, 89(3), 585–592.
https://doi.org/10.1007/s00253-010-2901-z

83. Onwosi C. O., Odibo F. J. Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World J. Microbiol. Biotechnol. 2012, 28(3), 937–942.
https://doi.org/10.1007/s11274-011-0891-3

84. Saikia R. R., Deka S., Deka M., Banat I. M. Isolation of biosurfactant-producing Pseudomonas aeruginosa RS29 from oil-contaminated soil and evaluation of different nitrogen sources in biosurfactant production. Ann. Microbiol. 2012, 62(2), 753–763.
 https://doi.org/10.1007/s13213-011-0315-5

85. Silva S. N., Farias C. B., Rufino R. D., Luna J. M., Sarubbo L. A. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Coll. Surf. B. Biointerfaces. 2010, 79(1), 174–183.
https://doi.org/10.1016/j.colsurfb.2010.03.050

86. Trummler K., Effenberger F., Syldatk C. An integrated microbial/enzymatic process for production of rhamnolipids and L-(+)-rhamnose from rapeseed oil with Pseudomonas sp DSM 2874. Eur. J. Lipid. Sci. Technol. 2003, 105(10), 563–571.
https://doi.org/10.1002/ejlt.200300816

87. Xia W. J., Luo Z. B., Dong H. P., Yu L., Cui Q. F., Bi Y. Q. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous Pseudomonas aeruginosa WJ-1 using waste vegetable oil. Appl. Biochem. Biotechnol. 2012, 166(5), 1148–1166.
 https://doi.org/10.1007/s12010-011-9501-y

88. Yin H., Qiang J., Jia Y., Ye J., Peng H., Qin H., Zhang N., He B. Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Proc. Biochem. 2009, 44(3), 302–308.
 https://doi.org/10.1016/j.procbio.2008.11.003

89. Chen S. Y., Wei Y. H., Chang J. S. Repeated pH-stat fedbatch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Appl. Microbiol. Biotechnol. 2007, 76(1), 67–74.
https://doi.org/10.1007/s00253-007-0980-2

90. M?ller M. M., H?rmann B., Syldatk C., Hausmann R. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Appl. Microbiol. Biotechnol. 2010, 87(1), 167–174.
https://doi.org/10.1007/s00253-010-2513-7

91. Heyd M., Franzreb M., Berensmeier S. Conti­nuous rhamnolipid production with integrated product removal by foam fractionation and magnetic separation of immobilized Pseudomonas aeruginosa. Biotechnol. Prog. 2011, 27(3), 706–716.
 https://doi.org/10.1002/btpr.607

92. Duetz W. A. Microtiter plates as minibioreactors: miniaturization of fermentation methods. Trends Microbiol. 2007, 15(10), 469–475.
 https://doi.org/10.1016/j.tim.2007.09.004

93. Weuster-Botz D. Parallel reactor systems for bioprocess development. Adv. Biochem. Eng. Biotechnol. 2005, V. 92, P. 125–143.
 https://doi.org/10.1007/b98916

94. Ochsner U. A., Reiser J., Fiechter A., Witholt B. Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl. Environ. Microbiol. 1995, 61(9), 3503–3506.

95. Wang Q., Fang X., Bai B., Liang X., Shuler P. J., Goddard W. A,. Tang Y. Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol. Bioeng. 2007, 98(4), 842–853.
 https://doi.org/10.1002/bit.21462

96. Cha M., Lee N., Kim M., Kim M., Lee S. Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putidа. Bioresour. Technol. 2008, 99(7), 2192–2199.

97. Cabrera-Valladares N., Richardson A. P., Olvera C. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl. Microbiol. Biotechnol. 2006, 73(1), 187–194.

98. Wittgens A., Tiso T., Arndt T. T., Wenk P., Hemmerich J., M?ller C., Wichmann R., K?pper B., Zwick M., Wilhelm S., Hausmann R., Syldatk C., Rosenau F., Blank L. M. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb. Cell. Fact. 2011. doi: 10.1186/1475-2859-10-80.

99. Suzuki T., Tanaka K., Matsubara J., Kimoshita S. Trehalose lipid and ?-branched-?-hydroxy fatty acids formed by bacteria grown on n-alkanes. Agric. Biol. Chem. 1969, 33(11), 1619–1625.
 https://doi.org/10.1271/bbb1961.33.1619

100. Rapp P., Bock H., Wray V., Wagner F. Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J. Gen. Microbiol. 115(2), 491–503.
 https://doi.org/10.1099/00221287-115-2-491

101. Kretschmer A., Bock H., Wagner F. Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes, Appl. Environ. Microbiol. 1982, 44(4), 864–870.

102. Espuny M. J., Egido S., Rodon I., Manresa A., Mercad? M. E. Nutritional requirements of a biosurfactant producing strain Rhodococcus sp. 51T7, Biotechnol. Lett. 1996, V. 18, P. 521–526.
https://doi.org/10.1007/BF00140196

103. Kim J. S., Powalla M., Lang S., Wagner F., L?nsdorf H., Wray V. Microbial glycolipid production under nitrogen limitation and resting cell conditions. J. Biotechnol. 1990, 13(4), 257–266.
  https://doi.org/10.1016/0168-1656(90)90074-L

104. Bouchez-Na?tali M., Vandecasteele J. P. Biosurfactants, an help in the biodegradation of hexadecane? The case of Rhodococcus and Pseudomonas strains. World J. Microbiol. Biotechnol. 2008, 24(9), 1901–1907.
https://doi.org/10.1007/s11274-008-9691-9

105. Franzetti A., Bestetti G., Caredda P.,  La Colla P., Tamburini E. Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains, FEMS Microbiol. Ecol. 2008, 63(2), 238–248.
https://doi.org/10.1111/j.1574-6941.2007.00406.x

106. Philp J. C., Kuyukina M. S., Ivshina I. B., Dunbar S. A., Christofi N., Lang S., Wray V. Alkanotrophic Rhodococcus ruber as a biosurfactant producer, Appl. Microbiol. Biotechnol. 2002, 59(2–3), 318–324.

107. Rapp P., Gabriel-J?rgens L. H. Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiology. 2003, 149(10), 2879–2890.
 https://doi.org/10.1099/mic.0.26188-0

108. Tokumoto Y., Nomura N., Uchiyama H., Imura T., Morita T., Fukuoka T., Kitamoto D. Structural characterization and surface-active properties of a succinoyl trehalose lipid produced by Rhodococcus sp. SD-74. J. Oleo. Sci. 2009, 58(2), 97–102.
 https://doi.org/10.5650/jos.58.97

109. Tuleva B., Christova N., Cohen R., Stoev G., Stoineva I. Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain. J. Appl. Microbiol. 2008, 104(6), 1703–1710.
 https://doi.org/10.1111/j.1365-2672.2007.03680.x

110. Ciapina E. M., Melo W. C., Santa A. L. M., Santos A. S., Freire D. M., Pereira N. Jr. Biosurfactant production by Rhodococcus erythropolis grown on glycerol as sole carbon source. Appl. Biochem. Biotechnol. 2006, 131(1–3), 880–886.
https://doi.org/10.1385/ABAB:131:1:880

111. Franzetti A., Gandolfi I., Bestetti G., Smyth T. J. P., Banat I. M. Production and applications of trehalose lipid biosurfactants.Eur. J. Lipid Sci. Technol. 2010, V. 112, Р. 617–627.

112. Mutalik S. R., Vaidya B. K., Joshi R. M., Desai K. M., Nene S. N. Use of response surface optimization for the production of biosurfactant from Rhodococcus sp. MTCC 2574. Bioresour. Technol. 2008, 99(16), 7875–7880.

113. Ortiz A., Teruel J. A., Espuny M. J., Marqu?s A., Manresa A., Aranda F. J. Interactions of a Rhodococcus sp. biosurfactant trehalose lipid with phosphatidylethanolamine membranes. Biochim. Biophys. Acta. 2008, 1778(12), 2806–2813.
 https://doi.org/10.1016/j.bbamem.2008.07.016

114. Peng F., Liu Z., Wang L., Shao Z. An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J. Appl. Microbiol. 2007, 102(6), 1603–1611.
https://doi.org/10.1111/j.1365-2672.2006.03267.x

115. Ruggeri C., Franzetti A., Bestetti G., Cared­daa P., La Collaa P., Pintusa M., Sergia S., Tamburinia E. Isolation and characterisation of surface active compoundproducing bacteria from hydrocarbon-contaminated environments. Int. Biodeterior. Biodegrad. 2009, 63(7), 936–942.
 https://doi.org/10.1016/j.ibiod.2009.05.003

116. Sadouk Z., Hacene H., Tazerouti A. Biosurfactants production from low cost substrate and degradation of diesel oil by a Rhodococcus strain. Oil. Gas. Sci. Technol. 2008, 63(6), 747–753.
 https://doi.org/10.2516/ogst:2008037

117. Dogan I., Pagilla K. R., Webster D. A., Stark B. C. Expression of Vitreoscilla hemoglobin in Gordonia amarae enhances biosurfactant production. J. Ind. Microbiol. Biotechnol. 2006, 33(8), 693–700.
 https://doi.org/10.1007/s10295-006-0097-0

118. Singer M. E., Finnerty W. R. Physiology of biosurfactant synthesis by Rhodococcus species H13-A. Can. J. Microbiol. 1990, 36(11), 741–745.
 https://doi.org/10.1139/m90-127

119. Kurane R., Hatamochi K., Kakuno T., Kiyohara M., Tajima T., Hirano M., Taniguchi Y. Chemical structure of lipid bioflocculant produced by Rhodococcus erythropolis. Biosci. Biotechnol. Biochem. 1995, 59(9), 1652–1656.
  https://doi.org/10.1271/bbb.59.1652

120. Ron E. Z., Rosenberg E. Natural roles of biosurfactants. Environ. Microbiol. 2001, 3(4), 229–236.
 https://doi.org/10.1046/j.1462-2920.2001.00190.x

121. Pirog T. P., Grytsenko N. A., Homyak D. I., Konon A. D., Antonyuk S. I. Optimization of synthesis of biosurfactants of Nocardia vaccinii K-8 under bioconversion of biodiesel production waste. Mikrobiol. Zh., 2011, 73(4), 15–24. (In Russian).

122. Pirog T. P., Antonuk S. I., Karpenko Y. V., Shevchuk T. A. The influence of conditions of Acinetobacter calcoaceticus K-4 strain cultivation on surfaceactive substances synthesis. Prikl. Biokhim. Microbiol. 2009, 45(3.), 272–278. (In Russian).

123. Pirog T. P., Shevchuk T. A., Voloshina I. N., Gregirchak N. N. Use of claydite-immobilized oil-oxidizing microbial cells for purification of water from oil. Prikl. Biokhim. Microbiol. 2005. 41(1), 51–55. (In Russian).

124. Pirog T. P., Shevchuk T. A., Volishina I. N., Karpenko E. V. Production of surfactants by Rhodococcus erythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates. Prikl. Biokhim. Microbiol. 2004, 40(5), 470–475. (In Russian).

125. Bach H., Berdichevsky Y., Gutnick D. An exocellular protein from the oil-degrading microbe Acinetobacter venetianus RAG-1 enhances the emulsifying activity of the polymeric bioemulsifier emulsan. Appl. Environ. Microbiol. 2003, 69(5), 2608–2615.
https://doi.org/10.1046/j.1462-2920.2001.00190.x

126. Zhao Z., Wong J. W. C. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene. Environ. Technol. 2009, 30(3), 291–299.
 https://doi.org/10.1080/09593330802630801

127. Kim S. H., Lim E. J., Lee S. O., Lee J. D., Lee T. H. Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnol. Appl. Biochem. 2000, 31 (3), 249–253.
 https://doi.org/10.1042/BA19990111

128. Pirog T., Sofilkanych A., Konon A., Shevchuk T., Ivanov S. Intensification of surfactants’ synthesis by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV В-7241 and Nocardia vaccinii K-8 on fried oil and glycerol containing medium. Kharchova i pererobna promislovist. 2013, 91(2), 149–157. (In Ukrainian).

129. Pirog T. P., Konon A. D., Skochko A. B. Microbial surface active substances use in biology and medicine. Biotekhnolohiia. 2011, 4(2), 24–38. (In Ukrainian).

130. Pirog T. P., Konon A. D., Sofilkanich A. P., Skochko A. B. Effect of biosurfactants Acineto­bacter calcoaceticus K-4 та Rhodococcus erythropolis EK-1 on some microorganisms. Mikrobiol. Zh. 2011, 73(3), 14–20. (In Ukrainian).

131. Skochko A. B., Konon A. D., Pirog T. P. Research of antiadhesion properties of surface-active substances of  Аcinetobacter calcoaceticus IMV В-7241. Kharchova promislovist. 2012, N 13, P. 77–80. (In Ukrainian).

132. Filyuk І., Sofilkanych А., Konon А., Parfenyuk S., Pirog T. Protective properties of surfaceactive substances of Rhodococcus erythropolis IMV Ас-5017 and Acinetobacter calcoaceticus IMV B-7241. Naukovi pratsi NUFT. 2012, N 43, P. 36–31. (In Ukrainian).

133. Pirog T. P., Shulyakova M. O., Shevchuk T. A., Sofylkanich A.P. Biotechnological potencial of bacteria of Rhodococcus strain and their metabolites. Biotekhnolohiia. 2011, 5(2), 51–67. (In Ukrainian).

134. Pirog T. A., Antonyuk S. I., Sorokina A. I. The influence of Аcinetobacter calcoaceticus K-4 surface-active substances on the efficiency of microbial destruction of oil pollutans. Mikrobiol. Zh. 2009, 71(5), 8–13. (In Ukrainian).

135. Pirog T. P., Homyak D. I., Grytsenko N. A., Sofilkanych A. P., Konon А. D., Pokora K. A. Bacteria of Nocаrdia genus as object of biotechnology. Biotechnol.acta. 2013, 6(3), P. 23–35. (In Ukrainian).

136. Takayama K., Wang C., Besra G. S. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 2005, 18(1), 81–101.
https://doi.org/10.1042/BA19990111

137. Kuyukina M. S., Ivshina I. B., Philp J. C., Christofi N., Dunbar S. A., Ritchkova M. I. Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J. Microbiol. Methods. 2001, 46(2), 149–156.
 https://doi.org/10.1016/S0167-7012(01)00259-7

138. Pirog T. P., Shevchuk T. A., Konon A. D., Shulyakova M., Iutinska G. Synthesis of surfactants Аcinetobacter calcoaceticus IMV B-7241 and Rhodococcus erythropolis IMV Ac-5017 in the medium with glycerol. Mikrobiol. Zh. 2012, 74(1), 20–27. (In Russian).

139. Pirog T. P., Shevchuk T. A,. Konon A. D,. Dolotenko E. Yu. Production of surfactants by Acinetobacter calcoaceticus K-4 grown on ethanol with organic acids. Prikl. Biokhim. Microbiol. 2012, 48(6), 569–576. (In Russian).

140. Pirog T. P., Shevchuk T. A., Shulyakova M. A. The influence of organic acids on biosur­factant synthesis by strain Acinetobacter calcoaceticus IMV B-7241 strain on glycerol medium. Biotekhnolohiia. 2012, 5(4), 88–95. (In Ukrainian).

141. Pirog T. P., Shevchuk T. A., Shulyakova M. A., Tarasenko D. O. Influence of citric acid оn synthesis of  biosurfactants of Rhodococcus erythropolis IMV Ас-5017. Mikrobiol. Zh., 2011, 73(5), 21–27. (In Ukrainian).

142. Homyak D. I., Grytsenko N. A., Konon A. D., Pirog T. P. The influence of organic acids on synthesis of surface-active substances under the conditions of growth of Nocardia vaccinii K-8 on glycerol. Microbiol. i Biotechnol. 2012, 1(17), 31–38. (In Ukrainian).

143. Pirog T., Sofilkanych A., ShevchukT., Shulyakova M. Biosurfactants of Rhodococcus erythropolis IMV Ас-5017: synthesis intensification and practical application. Prikl. Biokhim. Microbiol. 2013, 170(4), 880–894. (In Russian).

144. Pirog T. P., Ignatenko S. V. Scaling of the process of biosynthesis of biosurfactants by Rhodococcus erythropolis EK-1 on hexadecane. Prikl. Biokhim. Microbiol. 2011, 47(4), 393–399. (In Russian).

145. Hu Y., Ju L. K. Sophorolipid production from different lipid precursors observed with LC-MS. Enz. Microb. Technol. Rev. 2001, 29(10), 593–601.
 https://doi.org/10.1016/S0141-0229(01)00439-2

146. Cutler A. J., Light R. J. Regulation of hydroxydocosanoic acid sophoroside production in Candida bogoriensis by the levels of glucose and yeast extract in the growth medium. J. Biol. Chem. 1979, 254(6), 1944–1950.

147. Ito S., Inoue S. Sophorolipids from Torulopsis bombicola: possible relation to alkane uptake. Appl. Environ. Microbiol. 1982, 43(6), 1278–1283.

148. Batista R. M., Rufino R. D., Luna J. M., de Souza J. E., Sarubbo L. A. Effect of medium components on the production of a biosurfactant from Candida tropicalis applied to the removal of hydrophobic contaminants in soil. Water. Environ. Res. 2010, 82(5), 418–425.
 https://doi.org/10.2175/106143009X12487095237279

149. De Gusmao C. A. B., Rufino R. D., Sarubbo L. A. Laboratory production and characterization of a new biosurfactant from Candida glabrata UCP1002 cultivated in vegetable fat waste applied to the removal of hydrophobic contaminant. Antonie. Van. Leeuwenhoek. 2010, 26(9), 1683–1692.

150. Luna J. M., Rufino R. D., Albuquerque C. D., Sarubbo L. A., Campos-Takaki G. M. Economic optimized medium for tensioactive agent production by Candida sphaerica UCP0995 and application in the removal of hydrophobic contaminant from sand. Int. J. Mol. Sci. 2011, 12(4), 2463–2476.
 https://doi.org/10.3390/ijms12042463

151. Luna J. M., Rufino R. D., Sarubbo L. A., Rodrigues L. R., Teixeira J. A., de Campos-Takaki G. M. Evaluation antimicrobial and antiadhesive properties of the biosurfactant Lunasan produced by Candida sphaerica UCP 0995. Curr. Microbiol. 2011, 62(5), 1527–1534.
https://doi.org/10.1007/s00284-011-9889-1

152. Rufino R. D., Luna J. M., Sarubbo L. A. Antimicrobial and anti-adhesive potential of a biosurfactant Rufisan produced by Candida lipolytica UCP 0988. Coll. Surf. B. Biointerfaces. 2011, 84(1). 1–5.
 https://doi.org/10.1016/j.colsurfb.2010.10.045

153. Thaniyavarn J., Chianguthai T., Sangvanich P., Roongsawang N., Washio K., Morikawa M., Thaniyavarn S. Production of sophorolipid biosurfactant by Pichia anomala. Biosci. Biotechnol. Biochem. 2008, 72(8), 2061–2068.
https://doi.org/10.1271/bbb.80166

154. Takahashi M., Morita T., Wada K., Hirose N., Fukuoka T., Imura T., Kitamoto D. Production of sophorolipid glycolipid biosurfactants from sugarcane molasses using Starmerella bombicola NBRC 10243. J. Oleo. Sci. 1998, 60(5), 267–273.
https://doi.org/10.5650/jos.60.267

155. Wadekar S., Kale S., Lali A., Bhowmick D., Pratap A. Sophorolipid production by Starmerella bombicola (ATCC 22214) from virgin and waste frying oils, and the effects of activated earth treatment of the waste oils. J. Am. Oil. Chem. Soc. 2012, 89(6), 1029–1039.
 https://doi.org/10.1007/s11746-011-1986-6

156. Wadekar S. D., Kale S. B., Lali A. M., Bhowmick D. N., Pratap A. P. Utilization of sweetwater as a cost-effective carbon source for sophorolipids production by Starmerella bombicola (ATCC 22214). Prep. Biochem. Biotechnol. 2012, 42(2), 125–142.
https://doi.org/10.1080/10826068.2011.577883

157. Ribeiro I. A., Bronze M. R., Castro M. F., Ribeiro M. H. Optimization and correlation of HPLC-ELSD and HPLC-MS/MS methods for identification and characterization of sophorolipids. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2012, 899, 72–80.
 https://doi.org/10.1016/j.jchromb.2012.04.037

158. Price N. P., Ray K. J., Vermillion K. E., Dunlap C. A., Kurtzman C. P. Structural characterization of novel sophorolipid biosurfactants from a newly identified species of Candida yeast. Carbohydr. Res. 2012, V. 348, P. 33–41.
https://doi.org/10.1016/j.carres.2011.07.016

159. Kitamoto D., Akiba S., Hioki C., Tabuchi T. Extracellular accumulation of mannosylerythritol lipids by a atrain of Candida antarctica. Agric. Biol. Chem. 1990, 54(1), 31–36.
https://doi.org/10.1271/bbb1961.54.31

160. Rau U., Nguyen L. A., Schulz S., Wray V., Nimtz M., Roeper H., Koch H., Lang S. Formation and analysis of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl. Microbiol. Biotechnol. 2005, 66(5), 551–559.
 https://doi.org/10.1007/s00253-004-1672-9

161. Morita T., Konishi M., Fukuoka T., Imura T., Kitamoto D. Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence. Pseudozyma aphidis. Appl. Microbiol. Biotechnol. 2006, 73(2), 305–313.
 https://doi.org/10.1007/s00253-006-0466-7

162. Konishi M., Morita T., Fukuoka T., Imura T., Kakugawa K., Kitamoto D. Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59. Pseudozyma aphidis. Appl. Microbiol. Biotechnol. 2008, 78(1), 37–46.
 https://doi.org/10.1007/s00253-007-1292-2

163. Morita T., Konishi M., Fukuoka T., Imura T., Yamamoto S., Kitagawa M., Sogabe A., Kitamoto D. Identification of Pseudozyma graminicola CBS 10092 as a producer of glycolipid biosurfactants, mannosylerythritol lipids. J. Oleo. Sci. 2008, 57(2), 123–131.
https://doi.org/10.5650/jos.57.123

164. Morita T., Konishi M., Fukuoka T., Imura T., Kitamoto D. Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties. J. Biosci. Bioeng. 2008, 105(5), 493–502.
https://doi.org/10.1263/jbb.105.493

165. Fukuoka T., Morita T., Konishi M., Imura T., Kitamoto D. Characterization of new types of mannosylerythritol lipids as biosurfactants produced from soybean oil by a basidiomycetous yeast, Pseudozyma shanxiensis. J. Oleo. Sci. 2007, 56(8), 435–442.
 https://doi.org/10.5650/jos.56.435

166. Morita T., Ishibashi Y., Fukuoka T., Imura T., Sakai H., Abe M., Kitamoto D. Production of glycolipid biosurfactants, mannosylerythritol lipids, by a smut fun­gus, Ustilago scitaminea NBRC 32730. Biosci. Biotechnol. Biochem. 2009, 73(3), 788–792.
https://doi.org/10.1271/bbb.80901

167. Fukuoka T., Morita T., Konishi M., Imura T., Kitamoto D. A basidiomycetous yeast, Pseudozyma tsukubaensis, efficiently produces a novel glycolipid biosurfactant. The identification of a new diastereomer of mannosylerythritol lipid-B. Carbohydr. Res. 2008, 343(3), 555–560.
 https://doi.org/10.1016/j.carres.2007.11.023

168. Worakitkanchanakul W., Imura T., Fukuoka T., Morita T., Sakai H., Abe M., Rujiravanit R., Chavadej S., Minamikawa H., Kitamoto D. Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B. Coll. Surf. B. Biointerfaces. 2008, 65(1), 106–112.
https://doi.org/10.1016/j.colsurfb.2008.03.009

169. Morita T., Ogura Y., Takashima M., Hirose N., Fukuoka T., Imura T., Kondo Y., Kitamoto D. Isolation of Pseudozyma churashimaensis sp. nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosur­fac­tants, mannosylerythritol lipids. J. Biosci. Bioeng. 2011, 112(2), 137–144.
 https://doi.org/10.1016/j.jbiosc.2011.04.008

170. Morita T., Takashima M., Fukuoka T., Konishi M., Imura T., Kitamoto D. Isolation of basidiomycetous yeast Pseudozyma tsukubaensis and production of glycolipid biosurfactant, a diastereomer type of mannosylerythritol lipid-B. Appl. Microbiol. Biotechnol. 2010, 88(3), 679–688.
 https://doi.org/10.1007/s00253-010-2762-5

171. Morita T., Ishibashi Y., Hirose N., Wada K., Takahashi M., Fukuoka T., Imura T., Sakai H., Abe M., Kitamoto D. Production and characterization of a glycolipid biosurfactant, mannosylerythritol lipid B, from sugarcane juice by Ustilago scitaminea NBRC 32730. Biosci. Biotechnol. Biochem. 2011, 75(7), 1371–1376.
 https://doi.org/10.1271/bbb.110221

172. Konishi M., Nagahama T., Fukuoka T., Morita T., Imura T., Kitamoto D., Hatada Y. Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62. J. Biosci. Bioeng. 2011, 111(6), 702–705.
 https://doi.org/10.1016/j.jbiosc.2011.02.004

173. Fukuoka T., Yanagihara T., Ito S., Imura T., Morita T., Sakai H., Abe M., Kitamoto D. Reverse vesicle formation from the yeast glycolipid biosurfactant mannosylerythritol lipid-D. J. Oleo. Sci. 2012, 61(5), 285–289.
https://doi.org/10.5650/jos.61.285

174. Yamamoto S., Morita T., Fukuoka T., Imura T., Yanagidani S., Sogabe A., Kitamoto D., Kitagawa M. The moisturizing effects of glycolipid biosurfactants, mannosylerythritol lipids, on human skin. J. Oleo. Sci. 2012, 61(7),  407–412.
 https://doi.org/10.5650/jos.61.407

175. Takahashi M., Morita T., Fukuoka T., Imura T., Kitamoto D. Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H(2)O(2)-induced oxidative stress in cultured human skin fibroblasts. J. Oleo. Sci. 2012, 61(8), 457–464.
https://doi.org/10.5650/jos.61.457