Select your language

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

 1 2014"Biotechnologia Acta" v. 7, no 1, 2014
Р. 60-65, Bibliography 33, Ukrainian
Universal Decimal classification: 546.26.043


Prylutska S. V.1, Didenko G. V.2, Kichmarenko Yu. M.1, Kruts O. О.1, Potebnya G. P.2, Cherepanov V. V.3, Prylutskyy Yu. I.1

1Taras Shevchenko National University of Kyiv, Ukraine
2Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, Kyiv
3Institute of Physics of National Academy of Sciences of Ukraine, Kyiv

One of the main strategies in anticancer therapy is inhibition of the proliferative activity of cancer cells. However, antitumor action of conventional chemotherapy is always associated with numerous side effects, in particular it is toxic with respect to normal organs and in many cases promotes the progression of tumors. In this regard, there is a need to develop alternative therapies of tumors and the search of new non/low toxic (relative to normal cells) tumoritropic substances, which cause their degradation. Toxic effects of these substances on cancer cells can be realized by stimulating their death due to necrosis or apoptosis. To controlling these processes the use of pristine C60 fullerenes, which are capable in combination therapy to improve the antitumor activity of traditional antitumor drugs, preventing their toxic effect on the organ level by inhibiting reactions of peroxidation, is proposed.

The toxic effect of the created pristine C60 fullerene with an antibiotic anthracyclines doxorubicin (Dox) complex on tumor (Ehrlich ascites carcinoma) and immune (lymphocytes and macrophages) cells and hepatocytes was evaluated. It demonstrates the potential for high efficiency of C60+Dox complex use in cancer therapy.

Key words: С60 fullerene, doxorubicin, C60+Dox complex, toxicity in vitro.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2014


1. Kroto H. W., Heath S., O’Brien S. C., Curl R. F., Smalley R. E. C60: Buckminsterfullerene. Nature. 1985, V. 318, Р. 162–163.

2. Eletskii А. V., Smirnov B. М. Fullerenes and structures of carbo. Uspekhi Fiz. Nauk. 1995, V. 165, Р. 977–1009. (In Russian).

3. Dresselhaus M. S., Dresselhaus G., Eklund P. C. Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications. New York: Academic Press. 1996, 985 p.

4. Burlaka А. P., Sidorik Е. P., Prylutska S. V., Маtyshevska О. P., Golub A. A., Prylutskyy Yu. I., Scharff P. Сatalytic system of the reactive oxygen species on the C60 fullerene basis. Exp. Oncol. 2004, V. 26, Р. 326–327.

5. Prylutska S. V., Grynyuk I. I., Matyshevska O. P., Prylutskyy Yu. I., Ritter U., Scharff P. Antioxidant properties of C60 fullerenes in vitro. Fullerenes Nanotubes Carbon Nanostruct. 2008, V. 16, Р. 698–705.

6. Scharff P., Ritter U., Matyshevska O. P., Prylutska S. V., Grynyuk I. I., Golub A. A., Prylutskyy Yu.I., Burlaka A.P. Therapeutic reactive oxygen generation. Tumori. 2008, V. 94, Р. 278–283.

7. Schuetze C., Ritter U., Scharff P., Bychko A., Prylutska S., Rybalchenko V, Prylutskyy Yu. Interaction of N-fluorescein-5-isothiocyanate pyrrolidine-C60 compound with a model bimolecular lipid membrane. Mater. Sci. Engineer. C. 2011. V. 31. Р. 1148–1150.

8. Prylutska S., Bilyy R., Overchuk M., Bychko A., Andreichenko K., Stoika R., Rybalchenko V., Prylutskyy Yu., Tsierkezos N. G., Ritter U. Water-soluble pristine fullerenes C60 increase the specific conductivity and capacity of lipid model membrane and form the channels in cellular plasma membrane. J. Biomed. Nanotechnol. 2012, V. 8, Р. 522–527.

9. Prylutska S. V., Burlaka A. P., Prylutskyy Yu. I., Ritter U., Scharff P. Pristine C60 fullerenes inhibit the rate of tumor growth and metastasis. Exp. Oncol. 2011, V. 33, Р. 162–164.

10. Prylutska S. V., Burlaka A. P., Klymenko P. P., Grynyuk I. I., Prylutskyy Yu. I., Schuetze Ch., Ritter U. Using watersoluble C60 fullerenes in anticancer therapy. Cancer Nanotechnol. 2011, V. 2, Р. 105–110.

11. Prylutska S. V., Burlaka A. P., Prylutskyy Yu. I., Ritter U., Scharff P. Comparative study of antitumor effect of pristine C60 fullerenes and doxorubicin. Biotechnol. 2011, V. 4, Р. 82–87.

12. Prylutska S. V., Kichmarenko Yu. M., Bogutska K. I., Prylutskyy Yu. I. C60 fullerene and its derivatives as antitumor agents: prospects and problems. Biotekhnolohiia. 2012. 5(3), 9–17. (In Ukrainian).

13. Panchuk R. R., Chumak V. V., Skorokhid N. R., Lehka L. V., Prylutska S. V., Heffeter P., Ber­ger B., Stoika R. S., Prylutskyy Yu. I. Synergic antineoplastic effect of doxorubicin with C60 fullerene as a means of its delivery to malignant human cells in vitro experiments: cellular and molecular mechanisms. Biol. Studii. 2013, 7(1), 5–18. (In Ukrainian).

14. Andrievsky G., Klochkov V., Derevyanchen­ko L. Is the C60 Fullerene Molecule Toxic?! Fullerenes Nanotubes Carbon Nanostruct. 2005, V. 13, Р. 363–376.

15. Kolosnjaj J., Szwarc H., Moussa F. Toxicity studies of fullerenes and derivatives. Adv. Exp. Med. Biol. 2007, V. 620, Р. 168–180.

16. Aschberger K., Johnston H. J., Stone V., Aitken R. J., Tran C. L., Hankin S. M., Peters S. A., Cristensen F. M. Review of fullerene toxicity and exposure-appraisal of a human health risk assessment, based on open literature. Regul. Toxicol. Pharmacol. 2010, V. 58, Р. 455–473.

17. Rouse J. G., Yang J., Barton A. R., Monteiro-Reviere N. A. Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes. Toxicol. in vitro. 2006, V. 20, Р. 1313–1320.

18. Matsuda S., Matsui S., Shimizu Y., Matsuda T. Genotoxicity of colloidal fullerene С60. Environ. Sci. Technol. 2011, V. 1, Р. 4133–4138.

19. Dhawan A., Taurozzi J. S., Pandey A. K., Shan W., Miller S. M., Hashsham S. A., Tarabara V. V. Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity. Environ. Sci. Technol. 2006, V. 40, Р. 7394–7401.

20. Prylutska S. V., Matyshevska O. P., Golub A. А., Prylutskyy Y. I., Potebnya G. P., Ritter U., Scharff P. Study of С60 fullerenes and С60-containing composites cytotoxicity in vitro. Mater. Sci. Engineer. C. 2007, V. 27, Р. 1121–1124.

21. Prylutska S. V., Grynyuk I. I., Grebinyk S. M., Matyshevska O. P., Prylutskyy Yu. I., Ritter U., Siegmund C., Scharff P. Comparative study of biological action of fullerenes C60 and carbon nanotubes in thymus cells. Mat.-wiss. u. Werkstofftech. 2009, V. 40, Р. 238–241.

22. Hrelia S., Fiorentini D., Maraldi T., Angeloni C., Bordoni A., Biagi P.L., Hakim G. Doxorubicin induced early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocites. Biochem. Biophys. Acta. 2002, V. 64,  Р. 139–145.

23. Abou El Hassan M. A., Verheul H. M., Jorna A. S., Schalkwijk C., van Bezu J., van der Vijgh V. J. F., Bast A. The new cardioprotector monohydroxy­ethylrutoside protects against doxorubi­ininduced inflammatory effects in vitro. Brit. J. Cancer. 2003, V. 98, Р. 357–362.

24. Evstigneev M. P., Buchelnikov A. S., Voronin D. P., Rubin Yu. V., Belous L. F., Prylutskyy Yu. I., Ritter U. Complexation of C60 fullerene with aromatic drugs. Chem. Phys. Chem. 2013, V. 14, Р. 568–578.

25. Scharff P., Risch K., Carta-Abelmann L., Dmyt­ruk I. M., Bilyi M. M., Golub O. A., Khavryuchenko A. V., Buzaneva E. V., Aksenov V. L., Avdeev M. V., Prylutskyy Yu. I., Durov S. S. Structure of C60 fullerene in water: spectroscopic data. Carbon. 2004, V. 42, Р. 1203–1206.

26. Prylutska S. V., Matyshevska O. P., Grynyuk I. I., Prylutskyy Yu. I., Ritter U., Scharff P. Biological effects of C60 fullerenes in vitro and in a model system. Mol. Cryst. Liq. Cryst. 2007, V. 468, Р. 265–274.

27. Sashchenko L. P., Lukyanova T. I., Kabanova O. D., Mirkina I. I., Yatskin O. N., Pongor S., Gnuchev N. V. Different pathways of the release of cytotoxic proteins in LAK cells. Immunol. Lett. 1996, V. 53, Р. 25–29.

28. Campling B. G., Pym J., Baker H. M., Cole S. P., Lam Y. M. Chemosensitivity testing of small cell lung cancer using the MTT assay. Br. J. Cancer. 1991, V. 63, Р. 75–83.

29. Bulavin L., Adamenko I., Prylutskyy Yu., Durov S., Graja A., Bogucki A., Scharff P. Structure of fullerene C60 in aqueous solution. Phys. Chem. Chem. Phys. 2000, V. 2, Р. 1627–1629.

30. Prylutskyy Yu. I., Durov S. S., Bulavin L. A., Adamenko I. I., Moroz K. O., Geru I. I., Di-­hor I. N., Scharff P., Eklund P. C., Grigorian L. Structure and thermophysical properties of fullerene C60 aqueous solutions. Int. J. Thermophys. 2001, V. 22, Р. 943–956.

31. Prylutskyy Yu. I., Buchelnikov A. S., Voronin D. P., Kostjukov V. V., Ritter U., Parkinson J. A., Evstigneev M. P. C60 fullerene aggregation in aqueous solution. Phys. Chem. Chem. Phys. 2013, V. 15, 9351–9360.

32. Prilutski Yu. I., Durov S. S., Yashchuk V. N., Ogulchansky T. Yu., Pogorelov V. E., Astashkin Yu. A., Buzaneva E. V., Kirghizov Yu. D., Andrievsky G. V., Scharff P. Theoretical predictions and experimental studies of self-organization C60 nanoparticles in water solution and on the support. Europ. Phys. J. D. 1999, V. 9, 341–343.

33. Ohno M., Abe T. Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). J. Immunol. Meth. 1991, V. 145, 199–203.