ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta
V. 6, No 3, 2013
"Biotechnologia Acta" v. 6, no. 3, 2013
https://doi.org/10.15407/biotech6.03.075
Р. 75-82, Bibliography 36, Ukrainian.
Universal Decimal classification: 633.12:631.5:582:581.1
O. V. Sytar1,2, A. M. Gabr2, 3, N. Yu. Taran1, I. M. Smetanska2, 4
1Taras Shevchenko National University of Kyiv, Ukraine;
2Berlin University of Technology, Germany
3National Research Center, Cairo, Egypt
4University of Applied Science Weidenbach, Germany
The growth parameters of transformed root cultures, total phenolic content and phenolic acids composition has been studied in root cultures, which were obtained from various explants of buckwheat by Agrobacterium rhizogenes strains A4. The methods of obtaining of the transformed root cultures, total phenol estimation, gas-liquid chromatography and polymerase chain reaction has been used. Elevated levels of total phenols in transformed roots of buckwheat from different sources of explants have been found. The high content of chlorogenic, p-hydroxybenzoic, p-anisic and caffeic acids has been discovered in the root cultures, which can be used for their industrial production. Maximal root growth was equal 21.2 g/l of dry weight in the roots as source for root culture, 17.7 g/l with leaves and 14.6 g/l with stems at 3 week after placement. Molecular analysis by polymerase chain reaction amplification was confirmed that the rol B gene (652 bp) which transferred info hairy roots from Ri-plasmid in Agrobacterium rhizogenes is responsible for induction of root from plant species.
Key words: Fagopyrum esculentum Moench., phenols, phenolic acids, Agrobacterium rhizogenes, roots.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1. Ali S. S., Kasoju N., Luthra A. Indian medicinal herbs as sources of antioxidants. Food Res. Int. 2008, V. 41, P. 1–5.
https://doi.org/10.1016/j.foodres.2007.10.001
2. Darley-Usmar V., Halliwell B. Blood radicals: reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm. Res, 1996, V. 13, P.?649–662.
https://doi.org/10.1023/A:1016079012214
3. Hagels H., Lapke C., Schilcher H., Riedel E. Comparison of the distribution on free amino acids and phenolics compounds in Fagopyrum esculentum Moench. Pharm. Pharmacol. Lett, 1997, V. 7, P. 113–115.
4. Sedej I., Mandi C. A., Saka C. M. Comparison of antioxidant components and activity of buckwheat and wheat flours. Cereal Chem, 2010, V. 87, P.?387–392.
https://doi.org/10.1094/CCHEM-02-10-0018
5. Golisz A., Lata B., Gawronski S., Fujii Y. Specific and total activities of the allelochemicals identified in buckwheat. Weed Biol. Manag. 2007, V. 7, P. 164–171.
https://doi.org/10.1111/j.1445-6664.2007.00252.x
6. Alvares-Jubete L., Wijngaard H., Arend E. K., Gallagher E. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa, buckwheat and wheat as affected by sprouting and baking. Food Chem. 2010, V.?119, P. 770–778.
https://doi.org/10.1016/j.foodchem.2009.07.032
7. Gallardo C., Jimenez L., Garcia-Conesa M. T. Hydroxycinnamic acid composition and in vitro antioxidant activity of selected grain fractions. Food Chem. 2006, V. 99, P.?455–463.
https://doi.org/10.1016/j.foodchem.2005.07.053
8. Gorinstein S., Lojek A., Cіzhacek M., Pawelzik E. Comparison of composition and antioxidant capacity of some cereals and pseudocereals. Intern. J. Food Sci. Technol. 2008, 43(4),?629–637.
9. Azuma K., Nakayama M., Koshioka M. Phenolic antioxidants from the leaves of Corchorus olitorius L. J. Agric. Food Chem. 1999, V. 47, P. 3963–3966.
10. Lancaster J. E. Regulation of skin color in apples. Crit. Rev. Plant Sci. 1992, V.?10, P. 487–502.
11. Mohamed A. A., Patricia S. W., Anthon D. J. Effects of light on flavonoid and chlorogenic acid levels in the skin of ‘Jonagold’ apples. Sci. Horticult. 2001, V. 88, P.?289–298.
https://doi.org/10.1016/S0304-4238(00)00215-6
12. Oomah B. D., Mazza G. Flavonoids and antioxidative activities in buckwheat. J. Agric. Food Chem. 1996, V. 44, P.?1746–1750.
https://doi.org/10.1021/jf9508357
13. Steadman K. J., Burgoon M. S., Lewis B. A. Minerals, phytic acid, tannin and rutin in buckwheat seed milling fractions. J. Agric. Food Chem. 2001, V. 81. P. 1094–1100.
https://doi.org/10.1002/jsfa.914
14. Watanabe M. Catechins as antioxidants from buckwheat (Fagopyrum esculentum Moench) groats. J. Agric. Food Chem. 1998, 46(3),?839–845.
https://doi.org/10.1021/jf9707546
15. Erlund I., Kosonen T., Alfthan G. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur. J. Clin. Pharmacol. 2000, V.?56, P. 545–553.
https://doi.org/10.1007/s002280000197
16. Zhi-Bi H., Min D. Hairy roots and its application in plant genetic engineering. J. Integr. Plant Biol. 2006, V. 48, P.?121–127.
https://doi.org/10.1111/j.1744-7909.2006.00121.x
17. Trotin F., Moumou Y., Vasseur J. Flavanol production by Fagopyrum esculentum hairy and normal root cultures. Phytochemistry.? 1993, V. 32, P. 929–931.
https://doi.org/10.1016/0031-9422(93)85231-F
18. Lee S. Y., Cho S. I., Park M. H. Growth and rutin production in hairy root cultures of buckwheat (Fagopyrum esculentum M.). Prep. Biochem. Biotechnol. 2007, V.?37, P. 239–246.
https://doi.org/10.1080/10826060701386729
19. Kim Y. K., Xu H., Park W. T. Genetic transformation of buckwheat (Fagopyrum esculentum M.) with Agrobacterium rhizogenes and production of rutin in transformed root cultures. Austral. J. Crop Sci. 2010, 4(7), 485–490.
20. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plantarum. 1962, V. 15, P. 473–497.
https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
21. Petit A., Tempe J. Isolation of Agrobacterium Ti-plasmid regulatory mutants. Mol. Gen. Genet. 1978, V. 167, P. 147–155.
https://doi.org/10.1007/BF00266908
22. Singleton V. L., Rossi J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. 1965, V. 16, P. 144–158.
23. Cai Z., Kastell A., Mewis I. Polysaccharide elicitors enhance anthocyanin and phenolic acid accumulation in cell suspension cultures of Vitis vinifera. Plant Cell Tiss. Organ Cult. 2012, V. 108, P.?401–409.
https://doi.org/10.1007/s11240-011-0051-3
24. Mewis I., Smetanska I., Muller C., Ulrichs C. Speci?c polyphenolic compounds in cell culture of Vitis vinifera L. cv. Gamay Freaux. Appl. Biochem. Biotechnol. 2011,?164(2), 148–161.
https://doi.org/10.1007/s12010-010-9122-x
25. Yan Q., Shi V., Ng J., Yong Wu J. Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Sci.? 2006, 170(4), 853–858.
https://doi.org/10.1016/j.plantsci.2005.12.004
26. Andarwulan N., Shetty K. Phenolic content in differentiated tissue cultures of untransformed and Agrobacterium-transformed roots of anise (Pimpinella anisum L.). J. Agric. Food Chem. 1999, 47(4), 1776–1780.
https://doi.org/10.1021/jf981214r
27. Park N., Xiao H. Li., Uddin M. R., Un Park S. G. Phenolic compound production by different morphological phenotypes in hairy root cultures of Fagopyrum tataricum Gaertn. Arch. Biol. Sci. Belgrade. 2011, 63(1), 193–198.
https://doi.org/10.2298/ABS1101193P
28. Srivastava S., Srivastava A. K. Hairy root culture for mass — production of high — value secondary metabolites. Crit. Rev. Biotechnol. 2007, 27(1),?29–43.
https://doi.org/10.1080/07388550601173918
29. Kim Y. K., Li X., Xu H. Production of phenolic compounds in hairy root culture of tartary buckwheat (Fagopyrum tataricum Gaertn). J. Crop. Sci. Biotechnol. 2009, 12(1), P. 53–57.
https://doi.org/10.1007/s12892-009-0075-y
30. Sroka Z. Antioxidative and antiradical properties of plant phenolics. Z. Naturforsch. 2005, V. 60, P. 833–843.
https://doi.org/10.1515/znc-2005-11-1204
31. Horv?th E., P?l M., Szalai G., P?ldi E., Janda T. Exogenous 4 — ydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biologia Plantarum. 2007, 51(3), 480–487.
https://doi.org/10.1007/s10535-007-0101-1
32. Mitra A., Mayer M. J., Mellon F. A. 4-Hydroxycinnamoyl-CoA- hydratase/lyase, an enzyme of phenylpropanoid cleavage from Pseudomonas, causes formation of C6-C1 glucose conjugates when expressed in hairy roots of Datura stramonium. Planta. 2002, V. 15, P. 79–89.
https://doi.org/10.1007/s00425-001-0712-2
33. Grace S. C., Logan B. A. Energy dissipation and radical scavenging by the plant phenylpronanoid pathway. Phil. Trans. R. Soc. Lond. B. 2000, V. 355, P.?1499–1510.
https://doi.org/10.1098/rstb.2000.0710
34. Liu C.-Z., Abbasi B. H., Gao M. Caffeic acid derivatives production by hairy root cultures of Echinacea purpurea. J. Agric. Food Chem. 2006, 54(22),?8456–8460.
https://doi.org/10.1021/jf061940r
35. Stojakowska A., Malarz J., Szewczyk A., Kisiel W. Caffeic acid derivatives from a hairy root culture of Lactuca virosa. Acta Physiol. Plant. 2012, V. 34, P.?291–298.
https://doi.org/10.1007/s11738-011-0827-4
36. Zhao J., Lou J., Mou Y. Diterpenoid tanshinones and phenolic acids from cultured hairy roots of Salvia miltiorrhiza bunge and their antimicrobial activities. Molecules.? 2011, V. 16, P. 2259–2267.
https://doi.org/10.3390/molecules16032259