ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 6, no. 3, 2013
https://doi.org/10.15407/biotech6.03.083
Р. 83-88, Bibliography 19, Ukrainian.
Universal Decimal classification: 53.03.13.21: ХХ.01.77: 69.09.07.07
OPTIMIZATION OF FRUCTANS EXTRACTION FROM in vitro CULTIVATED CHICORY ‘HAIRY’ ROOTS
K. S. Maznik, N. A. Matvieieva
Institute of Cell Biology and Genetic Engineering of National Academy of Sciences of Ukraine, Kiyv
Dependence of efficiency of fructans extraction on soaking time, temperature and time of high temperature extraction was investigated. Dried and powdered chicory Cichorium intybus L. cv Pala rossa «hairy» roots obtained by Agrobacterium rhizogenes-mediated transformation with pCB161 vector were used for study. There were used low- and high-temperature extractions without heating at +22 °C during 0.5; 1 and 24 hours and with heating at +70 °C, +80 °C and +90 °C during 10, 20 and 30 minutes. Fructans fractionation was conducted by two ways: separation of high molecular weight fraction by crystallization at +4 °C and low molecular weight separation by extraction with 95% ethanol. To determine fructans concentration in the extracts McRary and Slattery method was used. Based on the experimental data, a mathematical model of fructan extraction process was created. Its adequacy was tested with the Fisher criterion and coefficient of determination. Optimal parameters of the extraction process chosen using the methods of linear programming were determined. Extraction for 30 minutes at 90 °C without soaking identified as the most tech nological one. It allowed to extract fructans general amount from transgenic roots (146 ±8,77 mg/g of root dry weight).
Optimal regime of fructan obtaining from chicory «hairy» roots is extraction at +90 °C for 30 min. Preliminary soaking time does not affect any effectiveness for such extraction. The most effective mode of obtaining of low- and high molecular fractions of fructans from transgenic chicory roots is twostage extraction with 95% ethanol at +80 °C and water at +90 °C with the duration of each stage of 30 minutes.
Key words: optimization, fructans, Cichorium intybus L., extraction, optimized fractionation.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1. Ranjitha Kumari B. D., Velayutham P., Anitha S. A comparative study on inulin and esculin content of in vitro and in vivo plants of Chicory (Cichorium intybus L. cv. Lucknow Local), Adv. Biol. Res. 2007, 1(1-2), P. 22-25.
2. Kok N. N., Taper H. S., Delzenne N. M. Oligofructose modulates lipid metabolism alterations induced by a fat-rich diet in rats. J. Appl. Toxicol. 1998, 18(1), 47-53.
https://doi.org/10.1002/(SICI)1099-1263(199801/02)18:1<47::AID-JAT474>3.0.CO;2-S
3. Delzenne N. M., Daubioul C., Neyrinck A. Inulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects. Br. J. Nutr. 2002, 87(2), 255-259.
4. Abrams S. A., Griffin I. J., Hawthorne K. M. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am. J. Clin. Nutr. 2005, 82(2), 471-4763.
5. ?zer D., Akin S., ?zer B. Effect of inulin and lactulose on survival of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-02 in acidophilus-bifidus yoghurt. Food Sci. Technol. Int. 2005. 11(1), 19-24.
https://doi.org/10.1177/1082013205051275
6. Van der Meulen R., Avonts L., De Vuyst L. Short fractions of oligofructose are preferentially metabolized by Bifidobacterium animalis DN-173 010. Appl. Environm. Microbiol. 2004, 70(4),?1923-1930.
https://doi.org/10.1128/AEM.70.4.1923-1930.2004
7. Kilian S., Kritzinger S., Rycroft C. The effects of the novel bifidogenic trisaccharide, neokestose, on the human colonic microbiota. World J. Microbiol. Biotechnol. 2002, 18(7), 637-644.
https://doi.org/10.1023/A:1016808015630
8. Pool-Zobel B. L. Inulin-type fructans and reduction in colon cancer risk: review of experimental and human data. British J. Nutr. 2005, 93(1), 73–90.
https://doi.org/10.1079/BJN20041349
9. Taper H. S., Roberfroid M. B. Nontoxic potentiation of cancer chemotherapy by dietary oligofructose or inulin. Nutr. Cancer. 2000, 38(1), 1–5.
https://doi.org/10.1207/S15327914NC381_1
10. Kaur N., Gupta A. K. Applications of inulin and oligofructose in health and nutrition J. Biosci. 2002, 27(7),?703–714.
11. Kelly G. Inulin-type prebiotics-a review: part 1. Altern. Med. Rev. 2008, 13(4), Р. 315-329.
12. Matvieieva N. A., Kishchenko O. M., Shakhovskii A. M., Kychyk M. V. Synthesis of inulin in the "bearded roots" chicory transformed using Agrobacterium rhizogenes. Biotekhnolohiia. 2011, 4(3), 56-63. (In Ukrainian).
13. Matvieieva N. A., Kvasko O. Yu. Features of polifruktan accumulation in transgenic plants of chicory Cichorium intybus L. Visn. ukr. tov. henet. selekts. 2011,?9(1), 65-69. (In Ukrainian).
14. Murashige T., Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant. 1962,?15(3), 473–496.
15. Olennikov D. N., Tankhaieva L. M. Study of colorimetric reaction with resorcinol inulin depending on its conditions. Chim. rast. syrya. 2008, N 1, P. 87–93. (In Rusian).
16. Pat. SSSR 487118, MKI С 13 К 3/00. The process for inulin producing / I. M. Fedotkin, A. A. Gerasimenko, L. D. Bobrovnik, Z. B. Shaposhnikova, A. S. Dychenko, V. V. Zelinskiy. Apl. 05.03.93; Publ. 05.10.75; Bul. 37. (In Rusian).
17. Pat. SSSR 1214104, MKI А 61 К 35/78. The process for inulin producing. V. V. Zinchenko, P. P. Khvorost, N. F. Komisarenko, N.?E. Vorobiev, G. V. Obolintseva, V. A. Biryuk, V. A. Mgdvareli, S. I. Bakay. Apl. 20.08.84; Publ. 28.02.86; Bul. 8. (In Rusian).
18. Application RF 93053968, MKI А 61 К 35/78. The process for producing inulin of Jerusalem artichoke. I. P. Chepurnoy, S. M. Kuninsev, E. N. Shevtsov, V. N. Geyko. Apl. 02.12.93; Publ. 10.10.96; Bul. 28. (In Rusian).
19. Asp N.-G. Nutritional importance and classification of food carbohydrates. Plant Polymeric Carbohydrates. F. Meuser, D. J. Manners, W. Seibel eds. 1993, Royal Soc. Chem., Cambridge, U.K. P. 121–126.
https://doi.org/10.1533/9781845698430.3.121