ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 6, no. 3, 2013
https://doi.org/10.15407/biotech6.03.121
Р. 121-131, Bibliography 32, Ukrainian.
Universal Decimal classification: 579.864.1:615.331
National University of Food Technologies, Kyiv, Ukraine
Modern huge and world-wide known projects concerning studying of human microbial ecology and construction of probiotics, particularly: Society for Microbial Ecology and Disease, Probiotics & Health Targeted Initiative of International Science and Technology Center (TI PROBIO ISTC), Human Microbiome Project of National Institutes of Health, MetaHIT Project (Metagenomics of the Human Intestinal Tract) of European Commission, Human Metabolome Project of Canadian University of Alberta and some more else were characterized in the article. Brief historical information and reference to official sites of every discussed project were given. Main goals and tasks of every project were described. Short characteristic of discussed projects and also modern accessible results of researches were given. Importance of every examined project for widening scientific knowledge in the field of human microbial ecology and also for improvement and/or for construction of modern effective probiotics on basis of human normal intestinal microflora were paid attention. Close interaction of scientific data received by realization of every discussed project was shown.
Key words: probiotics, international projects in human microbial ecology.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1. Shenderov B. A. Functional food and its role in prevention of metabolic syndrome. M.: DeLi Print. 2008, 319 p. (In Russian).
2. Shiribokov V. P., Yankovskii D. S., Diment H. S. Microbial ecology with colored satin. Teach. Guide. К: TOV “Chervona Ruta-Turs”. 2009, 312 p. (In Ukrainian).
3. Society for Microbial Ecology and Disease. Available at www.somed.nu.
4. Safronova L. A. 34th Intern. congress of the society of microbial ecology and diseases (Yokohama, Japan, 20–23 November, 2001). Mikrobial zhurn. 2012,?74(1), 64–65. (In Russian).
5. International Science and Technology Center. Available at www.istc.ru.
6. Human Microbiome Project. Available at http://www.hmpdacc.org.
7. Human Microbiome Project. Available at http://nihroadmap.nih.gov/hmp.
8. Turnbaugh P. J., Ley R. E., Hamady M. The human microbiome project. Nature. 2007, V. 449, P. 804–810.
9. Human Microbiome Project. Available at http://hmp.nih.gov/.
10. Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 2004, 68(4), 669–685.
11. Gill S. R., Pop M., Deboy R. T. Metagenomic analysis of the human distal gut microbiome. Science. 2006, V.?312, P. 1355–1359.
12. Manichanh C., Rigottier-Gois L., Bonnaud E. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006, V. 55, P.?205–211.
13. Qin J., Li R., Raes J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010, V. 464, P. 59–65.
14. MetaHIT Project. Available at http://www.metahit. eu/.
15. Gloux K., Leclerc M., Iliozer H. Development of high-throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth. Appl. Environ. Microbiol. 2007, V. 73, P. 3734–3737.
http://dx.doi.org/10.1128/AEM.02204-06
16. Jones B. V., Begley M., Hill C. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA. 2008, V. 105, P. 13580–13585.
http://dx.doi.org/10.1073/pnas.0804437105
17. Zoetendal E. G., Rajilic-Stojanovic M., de Vos W. M. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut. 2008, V. 57, P. 1605–1615.
http://dx.doi.org/10.1136/gut.2007.133603
18. Diaz-Torres M. L., Villedieu A., Hunt N. Determining the antibiotic resistance potential of the indigenous oral microbiota of humans using a metagenomic approach. FEMS Microbiol. Lett. 2006, V. 258, P. 257–262.
http://dx.doi.org/10.1111/j.1574-6968.2006.00221.x q
19. Daniel R. The metagenomics of soil. Nat. Rev. Microbiol. 2005, V. 3, P. 470–478.
http://dx.doi.org/10.1038/nrmicro1160
20. Gabor E. M., Alkema W. B., Janssen D. B. Quantifying the accessibility of the metagenome by random expression cloning techniques. Env. Microbiol. 2004, V.?6, P. 879–886.
21. Dicksved J., Halfvarson J., Rosenquist M. Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. ISME J. 2008, V.2, P. 716–727.
22. Arumugan M., Harrington E. D., Foerstner K. U. SmashCommunity: a metagenomic annotation and analysis tool. Bioinform. 2010, 26(23), 2977–2978.
http://dx.doi.org/10.1093/bioinformatics/btq536
23. Nagarajan N., Pop M. Review Sequencing and genome assembly using next-generation technologies. Met. Mol. Biol. 2010, V.?673, P. 1–17.
http://dx.doi.org/10.1007/978-1-60761-842-3_1
24. Simon C., Daniel R. Review Achievements and new knowledge unraveled by metagenomic approaches. Appl. Microbiol. Biotechnol. 2009, 85(2), P.?265–276.
http://dx.doi.org/10.1007/s00253-009-2233-z
25. Human Metabolome Project. Available at www.hmdb.ca.
26. Wishart D. S., Tzur D., Knox G. HMDB: the Human Metabolome Database. Nucleic Acids Research. 2007, V. 35, P.?521–526.
http://dx.doi.org/10.1093/nar/gkl923
27. German J. B., Hammock B. D., Watkins S. M. Metabolomics: building on a century of biochemistry to guide human health. Metabolomics. 2005, V. 1, P. 3–9.
http://dx.doi.org/10.1007/s11306-005-1102-8
28. Hamosh A., Scott A. F., Amberger J. S. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucl. Acids Res. 2005, V. 33, P. D514–D517.
http://dx.doi.org/10.1093/nar/gki033
29. Smith C. A., O’Maille G., Want E. J. METLIN: a metabolite mass spectral database. Ther. Drug Monit. 2005, V. 27, P. 747–751.
http://dx.doi.org/10.1097/01.ftd.0000179845.53213.39
30. Wishart D. S., Knox C., Guo A. C. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucl. Acid. Res. 2006, V. 34, P.?D668–D672.
http://dx.doi.org/10.1093/nar/gkj067
31. Dworzanski J. P., Snyder A. P., Chen R. Identification of bacteria using tandem mass spectrometry combined with a proteome database and statistical scoring. Anal. Chem. 2004, V. 76, P. 2355–2366.
http://dx.doi.org/10.1021/ac0349781
32. Wishart D. S., Yang R., Arndt D. Dynamic cellular automata: an alternative approach to cellular simulation. In Silico Biol. 2005, V. 5, P. 139–161