ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 6, no. 2, 2013
https://doi.org/10.15407/biotech6.02.074
Р. 74-79, Bibliography 28, Ukrainian.
Universal Decimal classification: 575.222.7:581.1
N. A. Matvieieva1, Yu. I. Kudriavets2, A. A. Lichova2, O. Yu. Kvasko1, A. M. Shachovsky1
1Institute of Cell Biology and Genetic Engineering of National Academy of Sciences of Ukraine, Kyiv
2Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology
of National Academy of Sciences of Ukraine, Kyiv
The aim of our work was to obtain Althaea officinalis L. «hairy» root culture with human interferon α2b gene (ifn- α2b), to measure fructans content and antiviral activity of extracts from the transgenic roots. Transformation of leaf and root explants was carried out by means of Agrobacterium rhizogenes-mediated transformation. Antiviral activity was measured by the reduction in cytopathic effect of vesicular stomatitis virus (Indiana strain) in bovine kidney cells line MDBK.
Transformation frequency was 100% for leaf and root explants. RT-PCR confirmed ifn- α2b gene transcription. The clones of transgenic roots differed in mass increasing from 0, 036 ± 0,008 up to 0,371 ± 0,019 g in 30 days cultivation and in fructan synthesis from 67,2± 4,47 up to 154,6 ± 6,62 mg/g roots dry weight.
Extracts from «hairy»roots culture were characterized by high antiviral activity against vesicular stomatitis virus — up to 26 000 IU/ g of roots fresh weight.
In some cases the genetic transformation shown to lead increasing the growth rate and increasing the level of fructan synthesis in transgenic A. officinalis roots. Extracts from cultivated in vitro marshmallow transgenic roots were characterized by high level of antiviral activity against vesicular stomatitis virus.
Thus, there were obtained transgenic A. officinalis roots, characterized by high growth rate, significant accumulation of fructans and high antiviral activity.
Ключевые слова: Agrobacterium rhizogenes, Althaea officinalis L., genetic transformation, human interferon alfa 2b, fructans.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1. Sev?n N., Oksman-Caldentey K. M. Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med. 2002. 68(10), 859–868.
https://doi.org/10.1055/s-2002-34924
2. Tepfer D. Transformation of several species of higher plants by Agrobacterium rhizogenes: phenotypic consequences and sexual transmission of the transformed genotype and phenotype. Cell. 1984, 37(3),?959–967.
https://doi.org/10.1016/0092-8674(84)90430-6
3. Roychowdhury D., Majumder A., Jha S. Agrobacterium rhizogenes-Mediated Transformation in Medicinal Plants: Prospects and Challenges in: S. Chandra et al. (eds.), Biotechnology for Medicinal Plants. Berlin. Heidelberg: Springer-Verlag, 2013, Р.?29–68.
4. Banerjee S., Shang T. Q., Wilson A. M. Expression of functional mammalian P450 2E1 in hairy root cultures. Biotechnol. Bioeng. 2002, 77(4), P. 462–466.
5. Mei-Liang Zhou, Xue-Mei Zhu, Ji-Rong Shao Production and metabolic engineering of bioactive substances in plant hairy root culture. Appl. Microbiol. Biotechnol. 2011, 90(4), 1229–1239.
https://doi.org/10.1007/s00253-011-3228-0
6. Baiza A. M., Quiroz-Moreno A., Ruiz J. A., Loyola-Vargas V. M. Genetic stability of hairy root cultures of Datura stramonium. Plant Cell Tiss. 1999, 59(1), 9–17.
https://doi.org/10.1023/A:1006398727508
7. Choi S. M., Son S. H., Yun S. R. Pilot scale culture of adventitious roots of ginseng in a bioreactor system. Ib Plant Cell Tiss. 2000,?62(3), 187–193.
https://doi.org/10.1023/A:1006412203197
8. Kim Y., Wyslouzil B. E., Weathers P. J. Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev. Biol. Plant. 2002, 38(1), 1–10.
https://doi.org/10.1079/IVP2001243
9. Ali Shah S. M., Akhtar Naveed, Akram M. Pharmacological activity of Althaea officinalis L. J. Med. Plants Research. 2011, 5(24), 5662–5666.
10. Rani S., Khan S. A., Ali M. Phytochemical investigation of the seeds of Althea officinalis L. Nat. Prod. Res. 2010, 24(14), 1358–1364.
https://doi.org/10.1080/14786411003650777
11. Deters A., Zippel J., Hellenbrand N. Aqueous extracts and polysaccharides from Marshmallow roots (Althea officinalis L.): cellular internalisation and stimulation of cell physiology of human epithelial cells in vitro. J. Ethnopharm. 2010, 127(1), 62–69.
https://doi.org/10.1016/j.jep.2009.09.050
12. Sutovska M., Capek P., Franova S. Antitussive activity of Althaea officinalis L. polysaccharide rhamnogalacturonan and its changes in guinea pigs with ovalbumine-induced airways inflammation. Bratisl. Lek. Listy. 2011, 112(12),?670–675.
13. Naz R., Anis M. Acceleration of adventitious shoots by interaction between exogenous hormone and adenine sulphate in Althaea officinalis L. Appl. Biochem. Biotechnol. 2012, 168(5), 1239–1255.
innovation@nas.gov.ua
14. Murashige T., Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Phys. Plant. 1962, 15(3), 473–497.
15. Matvieieva N. A., Shakhovskii A. M., Herasimenko I. M. Gene transfer of interferon-a2b biosynthesis into plants of chicory (Cichorium intybus L.) by agrobacterial transformation method. Biopolimery i klityna. 2009, 25(2), 120–125. (In Ukrainian).
16. Mannatis T., Frich E. F., Sembruk Dzh. Molecular cloning. M.: Mir. 1984, 480 p. (In Russian).
17. Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal. Вiochem. 1987, 163(1), 16–20.
18. Ermakov A. I., Arasimovich V. V., Yarosh N. P. Methods of biochemical research plants. L.: Agropromizdat. 1987, 143 p. (In Russian).
19. Bradford M. M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 7(72), 248–254.
20. Matvieieva N. A., Kudryavets Yu. I., Likhova A. A. Antiviral activity of extracts of transgenic plants of chicory and lettuce with a gene of interferon a-2b human. Tsitologia i genetika. 2012, N?5, P. 28–35. (In Russian).
21. Matvieieva N. A., Kvasko O. Yu. Features of polifruktan accumulation in transgenic plants of chicory Cichorium intybus L. Visnyk ukr. t-va henetykiv i selektsioneric. 2011, 9(1), 65–69. (In Ukrainian).
22. Chilton M. D., Tepfer D. A., Petit A. Agrobacterium rhizogenes inserts T-DNA into the genomes of the host-plant root cells. Nature. 1982, V. 295, P.?432–434.
23. Batra J., Dutta A., Singh D. Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-terminilinked Ri T-DNA gene integration. Plant. Cell. Rep. 2004, 23(3), 148–154.
https://doi.org/10.1007/s00299-004-0815-x
24. Chaudhuri K. N., Ghosh B., Tepfer D., Jha S. Spontaneous plant regeneration in transformed roots and calli from Tylophora indica: changes in morphological phenotype and tylophorine accumulation associated with transformation by Agrobacterium rhizogenes. Plant. Cell. Rep. 2006, 25(10),?1059–1066.
https://doi.org/10.1007/s00299-006-0164-z
25. Takehiro M., Morita S., Miki Y. Production of biologically active human interferon-a in transgenic rice. Plant Biotechnol. 2006,?23(1), 91–97.
https://doi.org/10.5511/plantbiotechnology.23.91
26. Luchakivskaya Y., Kishchenko O., Gerasymenko I. High-level expression of human interferon alpha-2b in transgenic carrot (Daucus carota L.) plants. Plant. Cell. Rep. 2011, 30(3), 407–415.
https://doi.org/10.1007/s00299-010-0942-5
27. Kenji Ohya, Takeshi Matsumura, Kazuhiko Ohashi Expression of Two Subtypes of Human IFN-a in Transgenic Potato. Plant. J. Interferon & Cytokine Research. 2001, 21(8), 595–602.
https://doi.org/10.1089/10799900152547858
28. Lowther W., Lorick K., Lawrence S. D., Wen-Shuz Yeow. Expression of biologically active human interferon alpha 2 in Aloe vera. Transgenic Res. 2012, 21(6),?1349–1357.
https://doi.org/10.1007/s11248-012-9616-0