- Details
- Hits: 677
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 12, No 4, 2019
Р. 57-64, Bibliography 33, English
Universal Decimal Classification: 547.458.1;612.115.12
https://doi.org/10.15407/biotech12.04.057
THE MECHANISM OF CLOTS FORMATION IN BLOOD PLASMA UNDER THE ACTION OF CHITIN DERIVATIVES
1National University of Life and Environmental Scienсes of Ukraine, Kyiv
2Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, Kyiv
The aim of the research was to find out the clot formation by the action of chitin derivates. The biochemical and immunologic investigation methods such as obtaining of fibrinogen, chitosan derivates, electrophoresis in PAAG, Western blot analysis, ELISE, the activated partial thromboplastin time and prothrombin time coagulological tests were used in these studies. The next results were obtained: chitin derivatives in equal measure cause the clot formation in whole blood, blood plasma and fibrinogen solution; the fibrinogen precipitate formed as a result of their action, practically does not contain fibrin; chitosan does not cause the activation of coagulation factors and the absence of newly-formed fibrin confirms it; the addition of calcium chloride to fibrinogen solution in concentration-dependent manner inhibits effect of chitosan.
Thus, under the action of chitosan, a fibrinogen precipitate forms due to the destabilization of its molecule by the lack of calcium. Absence of fibrin degradation products excludes the possibility of the fibrinolytic system activation and physiological degradation of the clot. It makes no sense to use haemostatic drugs based on chitosan in clinical practice.
Ключевые слова: chitin and its derivates, fibrinogen, haemostasis system.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Ravi Kumar M. N. V. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46 (Issue 1), 1–27. https://doi.org/10.1016/S1381-5148(00)00038-9
2. Dai T., Tanaka M., Huang Y.-Y., Hamblin M. R. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev. Anti Infect. Ther. 2011, 9 (7), 857–879. https://doi.org/10.1586/eri.11.59
3. Chen Z., Yao X., Liu L., Guan J., Liu M., Li Z. et al. Blood coagulation evaluation of N-alkylated chitosan. Carbohydr. Polym. 2017, 173, 259–68. https://doi.org/10.1016/j.carbpol.2017.05.085
4. Hoemann C. D., Marchand C., Rivard G. E., El-Gabalawy H., Poubelle P. E. Effect of chitosan and coagulation factors on the wound repair phenotype of bioengineered blood clots. Int. J. Biol. Macromol. 2017, 104 (Pt B), 1916–1924. https://doi.org/10.1016/j.ijbiomac.2017.04.114
5. Kyzas George Z., Bikiaris Dimitrios N. Recent Modifications of Chitosan for Adsorption Applications: A Critical and Systematic Review. Mar. Drugs. 2015, 13, 312–333. https://doi.org/10.3390/md13010312
6. Feskov A. E., Sokolov A. S., Soloshenko S. V. New hemostatic bandages based on a natural biopolymer chitosan. Meditsina neotlozhnuh sostojanyj. 2017, 2 (81), 164–167. https://doi.org/10.22141/2224-0586.2.81.2017.99698
7. Hattori H., Ishihara M. Changes in blood aggregation with differences in molecular weight and degree of deacetylation of chitosan. Biomed. Mater. 2015, 10, 015014. https://doi.org/10.1088/1748-6041/10/1/015014
8. Pogorielov M., Kalinkevich O., Deineka V., Garbuzova V., Solodovnik A., Kalinkevich A. et al. Haemostatic chitosan coated gauze: in vitro interaction with human blood and in-vivo effectiveness. Biomaterials Research. 2015, 19, 22–32. https://doi.org/10.1186/s40824-015-0044-0
9. Huang Y., Zhang Y., Feng L., He L., Guo R., Xu W. Synthesis of N-alkylated chitosan and its interactions with blood. Artificial cells, nanomedicine, and biotechnology. 2018, 46 (3), 544–50. https://doi.org/10.1080/21691401.2017.1328687
10. Zhang W., Zhong D., Liu Q., Zhang Y., Li N., Wang Q. et al. Effect of chitosan and carboxymethyl chitosan on fibrinogen structure and blood coagulation. J. Biomater. Sci. Polym. Ed. 2013, 24 (13), 1549–1563. https://doi.org/10.1080/09205063.2013.777229
11. Varetska T. V. Microgeterogeneity of fibrinogen. Kryofibrinogen. Ukr. Biochem. Zh. 1960, 32 (2). 13–24.
12. Younes I., Rinaudo M., Harding D., Hitoshi Sashiwa H. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs. 2015, 13 (3), 1133–1174. https://doi.org/10.3390/md13031133
13. Muzzarelli R. A. A., Peter M. G. (Eds.). Chitin Handbook. European Chitin Society. Atec Edizioni, Grottammare, Italy. 1997, 528 p.
14. Ostanina E. S. Tekhnologia pererabotki voskovoj moli, izuchenie pronivotuberkuleznyh svojstv chitozana I vzaimodejstvbia s lipoliticheskimi fermentami Dis. kand. biol. nauk: spec. 03.00.23 «Biotechnologia». Schelkovo. 2007, 142 s.
15. Hu Z., Lu S., Cheng Yu., Kong S., Li S., Li C. et al. Investigation of the Effects of Molecular Parameters on the Hemostatic Properties of Chitosan. Molecules. 2018, 23, 3147–3161. https://doi.org/10.3390/molecules23123147
16. Dolgov V. V., Svirin P. V. Laboratornaja diagnostika narushenij hemostaza. Мoskva-Tver’: ООО «Izdatel’stvo “Triada”». 2005, 227 s.
17. Laemli R. V. Cleavage of structural proteins during of bacteriophage T4. Nature. 1970, 227, 680–685. https://doi.org/10.1038/227680a0
18. Antibodies: a laboratory manual. Ed Harlow, David Lane by Cold Spring Harbor Laboratory. 1988, 726 p.
19. Burnette W. N. «Western blotting»: еlectrophoretic transfer of proteins from SDS polyacrilamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodated protein A. Anal. Biochem. 1981, 112 (2), 195–203. https://doi.org/10.1016/0003-2697(81)90281-5
20. Sonin D. L., Skorik Yu. A., Vasina L. V., Kostina D. A., Malashicheva A. B., Pochkaeva E. I.,Vasyutina M. L., Kostareva A. A., Galagudza M. M. Hemocompatibility of N-carboxyacyl derivatives of chitosan. Translyatsionnaya meditsina = Translational Medicine. 2016, 3 (2), 80–85.
21. Hattori H., Ishihara M. Feasibility of improving platelet-rich plasma therapy by using chitosan with high platelet activation ability. Exper. Ther. Med. 2017, V. 13, P. 1176–1180. https://doi.org/10.3892/etm.2017.4041
22. Zubareva A. A., Shcherbinina T. S., Varlamov V. P., Svirshchevskaya E. V. Intracellular sorting of differently charged chitosan derivatives and chitosan-based nanoparticles. Nanoscale. 2015, 7 (17), 7942–7952. https://doi.org/10.1039/C5NR00327J
23. Hu Z., Zhang D. Y., Lu S. T., Li P. W., Li S. D. Chitosan-Based Composite Materials for Prospective Hemostatic Applications. Mar. Drugs. 2018, 16 (8), 273–295. https://doi.org/10.3390/md16080273
24. Volkov G. L., Platonova T. N., Savchuk A. N., Gornitskaya O. V., Krasnobryzhaya E. N., Chernyshenko T. M. Sovremennie predstavlenia o sisteme gemostaza. Кyiv: Naukova dumka. 2005, 296 s.
25. Skrjabin K. G., Vihoreva G. A., Varlamov V. P. Hitin I hitozan. Poluchenie, svojstva I primenenie. Moskva, Nauka. 2002, 360 s.
26. Majekodunmi S. O. Current Development of Extraction, Characterization and Evaluation of Properties of Chitosan and Its Use in Medicine and Pharmaceutical Industry. American Journal of Polymer Science. 2016, 6 (3), 86–91. https://doi.org/10.5923/j.ajps.20160603.04
27. Kalliola S., Repo E., Srivastava V., Heiskanen J. P., Sirvi? J. A., Liimatainen H., Sillanpaa M. The pH sensitive properties of carboxymethyl chitosan nanoparticles cross-linked with calcium ions. Colloids Surf B Biointerfaces. 2017, 153, 229–236. https://doi.org/10.1016/j.colsurfb.2017.02.025
28. Averett L. E., Akhremitchev B. B., Schoenfisch M. H., Gorkun O. V. Calcium dependence of fibrin nanomechanics: the ?1 calcium mediates the unfolding of fibrinogen induced by force applied to the "A-a" bond. Langmuir. 2010, 26 (18), 14716–14722. https://doi.org/10.1021/la1017664
29. Apryatina K. V., Smirnova L. A., Mochalova A. E., Koryagin A. S. Novel chitosan-based polymer composites for medical and biological applications. Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo. 2014, 1 (2), 206–209.
30. Marx G., Mou X., Hotovely-Salomon A., Levdansky L., Gaberman E., Belenky D.,Gorodetsky R. Heat denaturation of fibrinogen to develop a biomedical matrix. J. Biomed. Mat. Res. 2008, 848 (1), 49–57. https://doi.org/10.1002/jbm.b.30842
31. Klinov D., Barinov N., Dubrovin E. The loss of the tertiary structure of fibrinogen induced by the external factors. FEBS OPEN BIO. 2018, 8, 403.
32. Zubairov D. M. Molekuljarnie mekhanizmi svertuvania krovi i tromboobrazovania. Kazan’: Fen. 2000, 367 s.
33. Dobrovolsky A. B., Titaeva E. V. The Fibrinolysis System: Regulation of Activity and Physiologic Functions of Its Main Components. Biochemistry (Moscow). 2002, 67 (1), 116–127. https://doi.org/10.1023/A:1013960416302
- Details
- Hits: 746
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 12, No 4, 2019
Р. 50-56, Bibliography 20, English
Universal Decimal Classification: 628.3
https://doi.org/10.15407/biotech12.04.050
Sablii L., Korenchuk M., Kozar M.
The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv
The aim of the research was to determine the degree of influence of nitrate wastewater concentration on the process of removal of phosphorus compounds by sequential water treatment in anoxic and aerobic conditions in an activated sludge system. Model wastewater solutions were used for research with following parameter: biochemical oxygen demand for 20 days –200 mgО2/l; phosphate concentrations – 11.87–12.38 mg/l; nitrate concentrations – 21.0; 36.0 and 48.0 mg/l. Аctivated sludge was added to them with content in solutions 2.2 mgО2/l to provide biological processes. For simulation of the biological process of dephosphotation in wastewater with usage of activated sludge in sequentially formed anoxic and aerobic conditions, a model sequential reactor — SBR reactor — was used. As the results show, with the increase in the concentration of nitrates at the inlet from 21.0 to 48.0 mg/l, the phosphate concentration in the treated solutions at the outlet from the bioreactor increases by 7.3%. Thus, from the work presented here, it can be concluded that for successful and effective implementation of the dephosphotation process the elimination of the nitrate present in wastewater is required. It is reasonable to separate processes of denitrification and dephosphotation in separate structures with the provision of minimal nitrate influence on the phosphorus removal from wastewater.
Key words: phosphate, nitrate activated sludge, wastewater.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Malovanyy A., Plaza E., Trela J., Malovanyy M. Combination of ion exchange and partial nitritation/Anammox process for ammonium removal from mainstream municipal wastewater. Water Sci. Technol. 2014, 70 (1), 144–151. https://doi.org/10.2166/wst.2014.208
2. Tulaydan Y., Malovanyy M., Kochubei V., Sakalova H. Treatment of high-strength wastewater from ammonium and phosphate ions with the obtaining of struvite. Sci.-Techn. J. Chem. Chem. Technol. 2017, 11 (4), P. 463–468. https://doi.org/10.23939/chcht11.04.463
3. Akpor O. B., Muchie M. Bioremediation of polluted wastewater influent: Phosphorus and nitrogen removal. Sci. Res. Essays. 2010, 5 (21), 3222–3230.
4. Wei D., Shi L., Yan T., Zhang G., Wang Y., Du B. Aerobic granules formation and simultaneous nitrogen and phosphorus removal treating high strength ammonia wastewater in sequencing batch reactor. Biores. Technol. 2014, V. 171, P. 211–216. https://doi.org/10.1016/j.biortech.2014.08.001
5. Kim Y. M., Cho H. U., Lee D. S., Park D., Park J. M. Influence of operational parameters on nitrogen removal efficiency and microbial communities in a full-scale activated sludge process. Water Res. 2011, 45 (17), 5785–5795. https://doi.org/10.1016/j.watres.2011.08.063
6. Zhukova V., Sabliy L., Lagod G. Biotechnology of the food industry wastewater treatment from nitrogen compounds. J. Chem. Chem. Technol. 2011, P. 133–138.
7. Dytczak M. A., Londry K. L., Oleszkiewicz J. A. Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates. Water Res. 2008, 42 (8–9), 2320–2328. https://doi.org/10.1016/j.watres.2007.12.018
8. Othman I., Anuar A. N., Ujang Z., Rosman N. H., Harun H., Chelliapan S. Livestock wastewater treatment using aerobic granular sludge. Biores. Technol. 2013, V. 133, P. 630–634. https://doi.org/10.1016/j.biortech.2013.01.149
9. Wang Y., Peng Y., Stephenson T. Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process. Biores. Technol. 2009, 100 (14), 3506–3512. https://doi.org/10.1016/j.biortech.2009.02.026
10. Yang S., Yang F., Fu Z., Wang T., Lei R. Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment. J. Hazard. Mater. 2010, 175 (1–3), 551–557. https://doi.org/10.1016/j.jhazmat.2009.10.040
11. Lemaire R., Yuan Z., Bernet N., Marcos M., Yilmaz G., Keller J. A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater. Biodegradation. 2009, 20 (3), 339–350. https://doi.org/10.1007/s10532-008-9225-z
12. Nielsen P. H., Saunders A. M., Hansen A. A., Larsen P., Nielsen J. L. Microbial communities involved in enhanced biological phosphorus removal from wastewater – a model system in environmental biotechnology. Cur. Opin. Biotechnol. 2012, 23 (3), 452–459. https://doi.org/10.1016/j.copbio.2011.11.027
13. Yuan Z., Pratt S., Batstone D. J. Phosphorus recovery from wastewater through microbial processes. Cur. Opin. Biotechnol. 2012, 23 (6), 878–883. https://doi.org/10.1016/j.copbio.2012.08.001
14. Brown P., Ong S. K., Lee Y.-W. Influence of anoxic and anaerobic hydraulic retention time on biological nitrogen and phosphorus removal in a membrane bioreactor. Desalination. 2011, 270 (1–3), 227–232. https://doi.org/10.1016/j.desal.2010.12.001
15. Zubrowska-Sudol M., Walczak J. Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge. Water Res. 2015, V. 76, P. 10–18. https://doi.org/10.1016/j.watres.2015.02.041
16. Podedworna J., Dubrowska-Sudo M. Nitrogen and phosphorus removal in a denitrifying phosphorus removal process in a sequencing batch reactor with a forced anoxic phase. Environm. Technol. 2012, 33 (2), 237–245. https://doi.org/10.1080/09593330.2011.563428
17. Rahimi Y., Torabian A., Mehrdadi N., Shahmoradi B. Simultaneous nitrification–denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR). J. Hazard. Mater. 2011, 185 (2–3), 852–857. https://doi.org/10.1016/j.jhazmat.2010.09.098
18. Blackburne R., Yuan Z., Keller J. Demonstration of nitrogen removal via nitrite in a sequencing batch reactor treating domestic wastewater. Water Res. 2008, 42 (8–9), 2166–2176. https://doi.org/10.1016/j.watres.2007.11.029
19. Kapagiannidis A. G., Zafiriadis I., Aivasidis A. Effect of basic operating parameters on biological phosphorus removal in a continuous-flow anaerobic–anoxic activated sludge system. Bioproc. Biosyst.Engin. 2012, 35 (3), 371–382. https://doi.org/10.1007/s00449-011-0575-2
20. Beuckels A., Smolders E., Muylaert K. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res. 2015, V. 77, P. 98–106. https://doi.org/10.1016/j.watres.2015.03.018
- Details
- Hits: 439
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 12, No 4, 2019
Р. 42-49, Bibliography 23, EnglishUniversal Decimal Classification:
577.121.7/ 612; 618.3-57.04; 57.017.3
https://doi.org/10.15407/biotech12.04.042
DYNAMICS OF BRAIN ENZYMES ACTIVITY IN RAT EXPOSED TO HYPOXIA
Rashidova А. M., Babazadeh, S. N. Mammedkhanova V. V., Abiyeva E. Sh.
Academician Abdulla Garayev Institute of Physiology, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
The aim of the work was to study the dynamics activity of lactate dehydrogenase (LDH; EC 1.1.1.27), aconitase (AH; EC 4.2.1.3), NAD-dependent malate dehydrogenase (MDH; EC 1.1.1.37), succinate dehydrogenase (SDH; EC 1.3.99.1) in homogenates and sub-fractions of brain structures of rat prenatally endured hypoxia at the organogenesis stage (in 11–15 days of development) and their role in the formation of compensatory - adaptive mechanisms in brain in postnatal ontogenesis. It was revealed that increasing of lactate dehydrogenase and malate dehydrogenase activity (P<0.001; P<0.01, correspondently) in the brain structures of the rats prevented metabolic disturbances in the regulation mechanisms of biosynthetic and bioenergetics processes in the brain. It has been shown that prenatal hypoxia upregulates aconitase activity in postnatal development and this process, probably, has a reversible character (P<0.01), the highest indices of succinate dehydrogenase activity were noticed in the hypothalamus and cerebellum of 30-day-old rat as compared to the other structures (P<0.001). Based on the data obtained, it can be concluded that hypoxia at the stage of organogenesis leads to a change in the energy supply process of the brain structures and, possibly, is irreversible. Analysis of changes in the enzymatic system in ontogenesis allows us to identify adaptation mechanisms and to assess the dynamics of changes in enzyme activity when the functional state changes, which make it possible to identify adaptive reserves of enzymes LDH, AH, MDH and SDH in brain exposed to hypoxia.
Key words: enzymes of energy metabolism.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Prabhakar N. R. Sensing hypoxia: physiology, genetics and epigenetics. J. Physiol. 2013, 591 (9), 2245–2257. https://doi.org/10.1113/jphysiol.2012.247759
2. Rashidova A. M. Effect of pre-/postnatal hypoxia on pyruvate kinase in rat brain. Int. J. Second. Metabol. (IJSM). 2018, 5 (3), 224–232, Turkey. https://doi.org/10.21448/ijsm.450963
3. Zhuravin I. A., Tumanova N. L., Vasilyev D. S. Changes in the mechanisms of brain adaption during postnatal ontogeny of rats exposed to prenatal hypoxia. Doklady biological sciences. 2009, 425 (1), 123–125. (In Russian). https://doi.org/10.1134/S001249660902001X
4. Golan H., Huleihel M. The effect of prenatal hypoxia on brain development: short- and long-term consequences demonstrated in rodent models. Dev. Sci. Jul. 2006, 9 (4), 338–349. https://doi.org/10.1111/j.1467-7687.2006.00498.x
5. Shvyreva E., Graf A., Maslova M., Maklakova A., Sokolova N. Acute hypoxic stress in the critical periods of embryogenesis: the influence on the offspring developmentin the early postnatal period. Europ. Neuropsycho pharmacol. Ed. Elsevier B. V. (Netherlands). 2017, 27 (9), 105. https://istina.msu.ru /publications/article/74505542
6. Pellerin L., Magistretti P. J. How to balance the brain energy budget while spending glucose differently. J. Physiology. 2003, 546 (2), 325. https://doi.org/10.1113/jphysiol.2002.035105
7. Belova N. G., Zhelev V. A., Agarkova L. A., Kolesnikova I. A., Gabitova N. A. Features of energy metabolism of cells in the mother-fetus-newborn system in pregnancy complicated by gestosis. Sibirskiy medicinskiy zhurnal. 2008, 4–1 (23), 7–10. (In Russian). https://cyberleninka.ru/article/v/osobennosti-energeticheskogo-obmena-kletok-v-sisteme-mat-plod-novorozhdennyy-pri-beremennosti-oslozhnennoy-gestozom
8. Pellegrino L. J., Pellegrino A. S., Cusman A. Z. A stereotaxic atlas of the rat brain. N. Y.: Plenum Press. 1979, 123 p.
9. Osadchaya L. M. Svobodnie aminokisloti nervnoy sistemi. Biohimiya mozga. S-Petersburg University. 1999, P. 29–58. (In Russian).
10. Chinopoulos C., Zhang S. F., Thomas B., Ten V., Starkov A .A. Isolation and functional assessment of mitochondria from small amounts of mouse brain tissues. Meth. Mol. Biol. 2011, V. 793, P. 311–324. https://doi.org/10.1007/978-1-61779-328-8_20
11. Bergmeyer H. U. Biochemica information. Meth. Enzym. Anal. 1975, V. II. https://books.google.az/books?id=jgIlBQAAQBAJ&pg=PA157&dq=Bergmeyer+H.U.+(1975).+Biochemica+information.&hl=ru&sa=X&ved= 0ahUKEwiNnt3b06PcAhUDlSwKHWbJDQgQ6AEILDAB
12. Guilbault G. G. In Handbook of Enzymatic Methods of Analysis. Marcel Dekker, N. Y. 1976, P. 509. (786 p.)
13. Proкhorova M. I. Metodi biokhimicheskih issledovanii. Izd-vo Leningradskogo universiteta. 1982, P. 210–212. (In Russian).
14. Kruger N. J. The Bradford method for protein quantitation. The protein Protocols Handbook, 3-rd ed. Ed. by J. M. Walker, Humana press Inc., Totowa N.J. 2009, P. 17–24. https://doi.org/10.1007/978-1-59745-198-7_4
15. Rashidova A. M., Hashimova U. F. Age-dependent activity of lactate dehydrogenase in brain structures during postnatal ontogenesis of rats exposed to hypoxia in the fetal period. J. Evol. Bioch. Physiol. 2019, 55 (3), 172–178. (In Russian). https://doi.org/10.1134/S0044452919030124
16. Zajchikova M. V., Alnaser A., Korolkova A. O., Epincev A. T. Regulyatornye i kineticheskie harakteristiki citoplazmaticheskoj akonitazy iz rastitelnyh i zhivotnyh tkanej. Vestnik VGU, seriya himiya, biologiya, farmaciya. 2010, V. 2, P. 81–84. (In Russian).
17. Sanjieva L. C. Acute hypoxia in female rats during periods of progestation and organogenesis. Vestnik Buryatskogo gosudarstvennogo universiteta. 2009, V. 4, P. 194–197. (In Russian). https://cyberleninka.ru/article/v/ostraya-gipoksiya-samok-krys-v-periody-progestatsii-i-organogeneza
18. Rashidova A. M., Gashimova U. F. Dependence of Activity of LDH and PK in Some Brain Structures of Rat from the Hypoxia Level Endured in the Stage of Organogenesis. Zh. Izvestiya NANA. 2017, 72 (1), 121–125 (In Russian). http://www.jbio.az/uploads/journal/e70929ecd0b2172f1485c15aaed81c57. pdf
19. Meerson F. Z. Adaptive medicine: mechanisms and protective effects of adaptation. Mosrva: Hypoxia Medical. 1993, 331 p. (In Russian).
20. Johnston M. V. Plasticity in the developing brain: implications for rehabilitation. Dev. Disabil. Rev. 2009, N 5, P. 94–101. https://doi.org/10.1002/ddrr.64
21. Anokhina E. B., Buravkova L. B. Mechanisms of regulation of transcription factor HIF under hypoxia. Zh. Biokhimiya. 2010, V. 75, P. 185–195. (In Russian). https://doi.org/10.1134/S0006297910020057
22. Semenza G. L. Hypoxia-inducible factors in physiology and medicine. Cell. 2012, 148 (3), 399–408. https://doi.org/10.1016/j.cell.2012.01.021
23. Speakman J. R., Selman C. The free-radical damage theory: Accumulating evidence against a simple link of oxidative stress to ageing and lifespan. BioEssays: news and reviews in molecular, cellular and developmental biology. 2011, 33 (4), 255–259. https://doi.org/10.1002/bies.201000132
- Details
- Hits: 483
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 12, No 4, 2019
Р. 34-41, Bibliography 20, English
Universal Decimal Classification: 579.22: 582.28
https://doi.org/10.15407/biotech12.04.034
1Poyedinok N. L., 2Tugay T. I., 2Tugay A. V., 3Mykchaylova O. B.,4Sergiichuk N. N., 5Negriyko A. M.
1 Institute of Food Biotechnology and Genomicsof the National Academy of Sciences of Ukraine, Kyiv
2 Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
3 Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kiyv
4 Open International University of Human Development "Ukraine", Kyiv
5 Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv
The aim of the work was to study the effect of nitrogen concentrations on photo-induction of growth, enzymatic activity and synthesis of melanin by the medicinal fungus Inonotus obliquus (Ach.: Pers.) Pil?t from the Collection of cultures of cap mushrooms of Kholodny Institute of Botany of the National Academy of Sciences of Ukraine. Irradiated by light of low intensity, different coherence and in different wavelength ranges, mycelium was cultivated in a dynamic mode on a glucose-peptone medium with different concentrations of total nitrogen. The concentration of the nitrogen source was not shown to significantly affect the photo-induced stimulation of the growth of I. obliquus. The increase in biomass accumulation of mycelium photoactivated in different modes was almost the same in all variants of the experiment, compared with the biomass of not-irradiated mycelium. A reliable dependence of the photo-stimulation of melanin synthesis on the concentration of nitrogen in the medium was established. Reduced nitrogen concentration more than twice increased the stimulating effect of low-intensity laser radiation with a wavelength of 488 nm. Using substrate with a reduced content of the nitrogen source is advisable to increase the photo-induced stimulating effect in the production of extracellular catalase, tyrosinase and polyphenol oxidase, intracellular peroxidase.
Thus, the cultivation parameters of I. obliquus and the light treatment regimes of the inoculum should be adjusted according to the target bioactive components.
Key words: Inonotus obliquus, photoinduction, nitrogen, melanin, catalase, tyrosinase, polyphenol oxidase, peroxidase, growth activity.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Zied D. C., Pardo-Gim?nez A. (Eds). Edible and Medicinal Mushrooms: Technology and Applications. Wiley & Sons Ltd. 2017, 562 р. https://doi.org/10.1002/9781119149446
2. Chang S. T., Wasser S. P. The role of culinary-medicinal mushrooms on human welfare with a pyramid model for human health. Int. J. Med. Mushrooms. 2012, 14 (2), 95–134. https://doi.org/10.1615/IntJMedMushr.v14.i2.10
3. Zheng W., Miao K., Liu Y., Zhao Y., Zhang M., Pan S., Dai Y. Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production Appl. Microbiol. Biotechnol. 2010, 87 (4), 1237–1254. https://doi.org/10.1007/s00253-010-2682-4
4. Zheng W., Zhao Y., Zheng X., Liu Y., Pan S., Dai Y., Liu F. Production of antioxidant and antitumor metabolites by submerged cultures of Inonotus obliquus cocultured with Phellinus punctatus. Appl. Microbiol. Biotechnol. 2011, 89 (1), 157–167. https://doi.org/10.1007/s00253-010-2846-2
5. Poyedinok N. L. Light regulation of growth and melanin formation in Inonotus obliquus (Pers.) Pilat. Biotechnol. acta. 2013, 6 (2), 115?120. (In Russia). https://doi.org/10.15407/biotech6.02.115
6. Poyedinok N. L., Mykchaylova O. B., Tugay T. I., Tugay A., Negriyko A., Dudka I. A. Effect of light wavelengths and coherence on growth, enzymes activity and melanin production of liquid cultured Inonotus obliquus (Ach.:Pers.) Pil?t. Appl. Biochem. Biotechnol. 2015, 176 (2), 333?343. https://doi.org/10.1007/s12010-015-1577-3
7. Friedl M. A., Kubicek C. P., Druzhinina I. S. Carbon source dependence and photostimulation of conidiation in Hypocrea atroviridis. Appl. Environ. Microbiol. 2008, 74 (1), 245?250. https://doi.org/10.1128/AEM.02068-07
8. Friedl M. A., Schmoll M., Kubicek C. P., Druzhinina I. S. Photostimulation of Hypocrea atroviridis growth occurs due to a cross-talk of carbon metabolism, blue light receptors and response to oxidative stress. Microbiology. 2008, 154 (4), 1229–1241. https://doi.org/10.1099/mic.0.2007/014175-0
9. Schuster A., Kubicek C. P., Friedl M. A., Druzhinina I. S., Schmoll M. Impact of light on Hypocrea jecorina and the multiple cellular roles of Envoy in this process. BMC genomics. 2007, 8 (1), 449. https://doi.org/10.1186/1471-2164-8-449
10. Tisch D., Kubicek C. P., Schmoll M. The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei. BMC genomics. 2011, 12 (1), 613. https://doi.org/10.1186/1471-2164-12-613
11. Tisch D., Schmoll M. Targets of light signalling in Trichoderma reesei. BMC genomics. 2013, 14 (1), 657. https://doi.org/10.1186/1471-2164-14-657
12. Tisch D., Kubicek C. P., Schmoll M. Crossroads between light response and nutrient signalling: ENV1 and PhLP1 act as mutual regulatory pair in Trichoderma reese. BMC genomics. 2014, 15 (1), 425–438. https://doi.org/10.1186/1471-2164-15-425
13. Schmoll M. Light, stress, sex and carbon-the photoreceptor ENVOY as a central checkpoint in the physiology of Trichoderma reesei. Fungal Biol. 2017, 122 (6), 479–486. https://doi.org/10.1016/j.funbio.2017.10.007
14. Zhu J. C., Wang X. J. Effect of blue light on conidiation development and glucoamylase enhancement in Aspergillus niger. Acta microbiologica Sinica. 2005, 45 (2), 275–278.
15. Ricci M., Krappmann D., Russo V. E. A. Nitrogen and carbon starvation regulate conidia and protoperithecia formation of Neurospora crassa grown on solid media. Fungal. Genet. Newsl. 1991, 38 (1), 87–88. https://doi.org/10.4148/1941-4765.1462
16. Sommer T., Degli-Innocenti F., Russo V. E. A. Role of nitrogen in the photoinduction of protoperithecia and carotenoids in Neurospora crassa. Planta. 1987, 170 (2), 205–208. https://doi.org/10.1007/BF00397889
17. Poyedinok N. L., Mykchaylova O. B., Sergiichuk N. N., Negriyko A. M. Realization of Macromycete Photoinduced Growth Activity: Influence of Cultivation Ways and the Concentration of Carbon and Nitrogen. Innov. Biosyst. Bioeng. 2018, 2 (3), 196–202. https://doi.org/10.20535/ibb.2018.2.3.134629 (In Russia).
18. Mykchaylova O. B., Poyedinok N. L., Buchalo A. S. Biotechnological aspects of cultivation of species of the genus Morchella on liquid nutrient media. Immunopathology, Allergology, Infectology. 2009; 2 (1), 166?167. (In Russia).
19. Puchkova T. A., Kapich A. N., Osadchaya O. V. Influence of conditions of cultivation for education biologically active substances by mushrooms of the genus Cordyceps and their antioxidant activity. Trudyi BGU. 2013, 8 (1), 246–252. (In Russia).
20. Poyedinok N. L., Mykchaylova O. B., Buchalo A. S., Negriyko A. M. Light regulation of growth and biosynthetic activity of ling zhi or reishi medicinal mushroom, Ganoderma lucidum (W. Curt: Fr.) P. Karst. (Aphyllophoromycetideae) in pure culture. Int. J. Med. Mushr. 2008, 10 (4), 369–378. https://doi.org/10.1615/IntJMedMushr.v10.i4.100
- Details
- Hits: 804
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 12, No 4, 2019
Р. 27-33, Bibliography 20, English
Universal Decimal Classification: 633.584.5+631.427.1
https://doi.org/10.15407/biotech12.04.027
1Kryvtsova M., 1Bobryk N., 2Simon L.
1 Uzhhorod National University, Ukraine
2 University of Ny?regyh?za, Hungary
The aim of the work was to study the soil agrochemical indices, soil microbiocoenosis, in case of growing of energy cultures and based on the mineralization coefficient, to make a conclusion on the speed of mineralization processes in the soils under study. In conditions of continuous field experiment (2011–2016), the dynamics of soil microbial associations was studied for willow (Salix triandra x Salix viminalis 'Inger') cultivation with application of experimental fertilizers of different types. In the research fertilizers there were used sulfuric urea, municipal biocompost, municipal sewage sludge compost, rhyolite tuff and willow ash. The soil microbiotic communities analysis was conducted by the method of serial dilutions of soil suspension with the use of differentially diagnostic nutrient media: meat-peptone agar, starch-ammonium agar, Ashby medium, potato agar, Czapek Dox medium, starvation agar, Ploskirev medium. The direction of the microbiological processes in the soils determined.
According to the results, it was established that the most promising for the purpose of improving the metabolic activitiof the soil (in the growth of energy willow) is a municipal sewage sludge compost and a municipal biocompost. In case of the use of municipal sewage sludge compost, the number of intestinal bacteria, ammonifiers, micromycetes and actinomycetes was doubled as compared with the control. In case of the use of municipal biocompost, the levels of microscopic fungi and cellulolytic bacteria doubled, and those of intestinal bacteria and pedotrophs tripled as compared with the control. While calculating the mineralization/immobilization index, it was shown that the most significant deviation from the control plot was found in the rhyolite tuff treated soil – a decrease by 6 times, and in case of willow ash by 2.3 times, which proved the inhibition of mineralization of the organic substances in the soil.
Key words: energy willow, organic and inorganic soil additives, soil microbiocoenosis, mineralization coefficient.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Kuffner M., De Maria S., Puschenreiter M., Fallmann K., Wieshammer G., Gorfer M., Strauss J., Rivelli A. R., Sessitsch A. Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J. Appl. Microbiol. 2010, 108 (4), 1471–1484. https://doi.org/10.1111/j.1365-2672.2010.04670.x
2. Mahar J., Mahar M., Khan M. Comparative study of feature extraction methods with K-NN for off-line signature verification. Emerging Technologies, 2006. ICET'06. International Conference on. 2006, Р. 115–120. https://doi.org/10.1109/ICET.2006.335945
3. Rod'kin O. I. Production of renewable biofuel in agrarian landscapes: ecological and technological aspects. – Minsk: MGEHU im. A. D. Saharova. 2011, 212 p. (In Russian).
4. Xue K., van Nostrand J. D., Vangronsveld J., Witters N., Janssen J. O., Kumpiene J., Siebielec G., Galazka R., Giagnoni L., Arenella M., Zhou J. Z., Renella G. Management with willow short rotation coppice increase the functional gene diversity and functional activity of a heavy metal polluted soil. Chemosphere. 2015, V. 138, Р. 469–477. https://doi.org/10.1016/j.chemosphere.2015.06.062
5. Pulford I. D., Dickinson N. M. Phytoremediation technologies using trees. In: Trace Elements in the Environment. Biogeochemistry, Biotechnology, and Bioremediation. (Eds.: Prasad M. N. V., Sajwan K. S., Naidu R.). CRC Press. Taylor and Francis Group. Boca Raton. Florida. 2006, P. 383–403. https://doi.org/10.1201/9781420032048.sec4
6. Simon L. Cultivation and utilization of giant reed (Arundo donax L.) N?v?nytermel?s. 2017, 66 (2), Р. 89–109. (In Hungarian).
7. Berndes F., Fredrikson F., B?rjesson P. Cadmium accumulation and Salix-based phytoextraction on arable land in Sweden. Agriculture, Ecosystems & Environment. 2004, 103 (1), Р. 207–223. https://doi.org/10.1016/j.agee.2003.09.013
8. Mazurenko N. A., Maurer V. M. Distribution of representatives of the genus Salix l. in Ukraine and prospects of their use in landscaping. Naukovyy visnyk NUBIP Ukrayiny. Seriya: Lisivnytstvo ta dekoratyvne sadivnytstvo. 2013, 187 (1), 93–99. (In Ukrainian).
9. Kryvtsova M., Bobrik N., Kolesnik A., Simon L. Microbiota of upper soil in a long-term open-field fertilization experiment with energy willow (Salix sp.). Proceedings of Abstracts. International Conference on Long-term Field Experiments (Ed. Mak?di M.). Ny?regyh?za, Hungary. 27–28 September 2017, Р. 42.
10. Kryvtsova M., Simon L., Bobryk N., Timoshok N., Spivak N., Doctor K. The influence of energy willow (Salix viminalis L.) cultivation on soil microbiota. Proceedings of Abstracts. Permaculture and organic agriculture. International scientific and practical conference. Uzhhorod, Ukraine. 24–25 February 2018, P. 23–25.
11. Gyuricza Cs., Hegyesi J., Kolhelb N. R?vid v?g?sfordul?j? f?z (Salix sp.) energia?ltetv?ny termeszt?s?nek tapasztalatai ?s ?letciklus-elemz?s?nek eredm?nyei. (Experience drawn from the production of short harvest cycle willow (Salix sp.) as energy crop and results of its life cycle analysis) – N?v?nytermel?s. 2011, 60 (2), Р. 45–65. https://doi.org/10.1556/Novenyterm.60.2011.2.3
12. Simon L. et al. Effect of various soil amendments on the mineral nutrition of Salix viminalis and Arundo donax energy crops. Eur. Chem. Bull. 2013, 2 (1), 18–21.
13. Simon L. et al. Impact of ammonium nitrate and rhyolite tuff soil application on the photosynthesis and growth of energy willow. In: International Multidisciplinary Conference. 10th edition. May 22?24, 2013. Baia Mare, Romania – Ny?regyh?za, Hungary. (Eds.: Ungureanu N., Cotetiu R., Sikolya L., P?y G.). Scientific Bulletin, Serie C, Fascicle: Mechanics, Tribology, Machine Manufacturing Technology. Р. 143–146. Bessenyei Book Publisher. Ny?regyh?za (Hungary).
14. Simon L. et al. Examination of nutritional supply of energy and arable crops, with particular reference to the combined effect of nitrogen fertilizers, biowastes and soil additives. Research Final Report prepared for Nitrog?nm?vek Vegyipari Co. (P?tf?rd?, Hungary) on behalf of Ny?r-Inno-Spin Ltd. (Ny?regyh?za, Hungary). College of Ny?regyh?za. 2015, P. 1–123. (manuscript).
15. Aseeva I. V., Babieva I. P., Byzov B. A. Methods of soil microbiology and biochemistry. Ed. D. G. Zvyagintseva. MGU. Moscow. 1991, P. 1-304. (In Russian).
16. Andreyuk K. I., Iutyns'ka H. O., Antypchuk A. F., Valahurova O. V., Kozyrytska V. Е., Ponomarenko S. P. Functioning of microbial cenoses under anthropogenic load. Kyiv: Oberehy. 2001, 240 р. (In Ukrainian).
17. Joniec J., Kwiatkowska E. Microbiological activity of soil amended with granulated fertilizer from sewage sludge. J. Elem. 2012, V. 1, Р. 143–154. https://doi.org/10.5601/jelem.2014.19.1.586
18. Truu M., Truu J., Heinsoo K. Changes in soil microbial community under willow coppice: The effect of irrigation with secondary-treated municipal wastewater. Ecol. Eng. 2009, 35 (6), 1011–1020. https://doi.org/10.1016/j.ecoleng.2008.08.010
19. Malynovs'ka I. M. Composition of microbial communities of root zone of the plant communities of different types. Mikrobiolohia i biotekhnolohia. 2011, V. 4, Р. 60–68. (In Ukrainian). https://doi.org/10.18524/2307-4663.2011.4(16).93560https://doi.org/10.18524/2307-4663.2011.4(16).93560
20. Romanchuk L. D., Borysyuk L. B., Shvayka O. V. The stability of energy willow agrocenoses on reclaimed lands in Polissya of Ukraine. Visnyk ZhNAEU. 2016, 2 (56), 37–43. (In Ukrainian). https://doi.org/10.18524/2307-4663.2011.4(16).93560