- Details
- Hits: 127
ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
Biotechnologia Acta, Т. 14, № 5 , 2021
P. 74-83, Bibliography 53, англ.
UDC: 618.146-006.52-036.2(09)
https://doi.org/10.15407/biotech14.05.074
DETERMINING PROBABILITY OF CANCER CELL TRANSFOMATION AT HUMAN PAPILLOMAVIRUS INFECTION
L. P. Buchatskyi, V. V. Stcherbyc
Taras Shevchenko Kyiv National University
Aim. The purpose of the work was to assess the probability of cancerous transformation of cells for viruses of high and low oncogenic risk.
Results. Using normalized squared error (NSE) for viruses of high (20 strains) and low (153 strains) oncogenic risk, rank statistic of 2-exponential type was build. For productive papillomavirus infection, NSE function was determined as the growing accurate 2-exponent of a cell layer basal to the epithelial surface. Logarithm of NSE numerical values is proportional to the cell entropy that is connected with the availability of virus DNA. To calculate entropy, generalized Hartley formula was used with the informational cell of dimension d: H = NdLOG(NSE), where N is the generalized cell coordinate.
Conclusions. Using a statistical ensemble of E6 proteins separately for viruses of high and low oncogenic risk made it possible to assess the probability of cancerous transformation of cells, which was proportional to the ratio of the area of entropy of cancer transformation to the area of the productive entropy region papillomavirus infection.
Key words: human papillomavirus infection, carcinogenesis, cumulative Hartley entropy.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Walboomers J. M. M., Jacobs M. V., Manos M. M., Bosch F. X., Kummer J. A., Shah K. V., Snijders P. J., Peto J., Meijer C. J., Mu?oz N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 1999, V. 189, P. 12–19. https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F
2. Harald zur Hausen. Papillomaviruses in the causation of human cancers – a brief historical account. Virology. 2009, V. 384, P. 260–265. https://doi.org/10.1016/j.virol.2008.11.046
3. Crosbie E. J., Einstein M. H., Franceschi S., Kitchener H. C. Human papillomavirus and cervical cancer. Lancet. 2013, V. 382, P. 889–999. https://doi.org/10.1016/S0140-6736(13)60022-7
4. Senapati R., Senapati N. N., Dwibedi B. Molecular mechanisms of HPV mediated neoplastic progression. Infectious Agents and Cancer. 2016, V. 11, P. 59. https://doi.org/10.1186/s13027-016-0107-4
5. Castellsagu? X, Munoz N. Chapter 3: Cofactors in human papillomavirus carcinogenesis – role of parity, oral contraceptives and tobacco smoking. J. Natl. Cancer Inst. Monogr. 2003, V. 31, P. 20–28. https://doi.org/10.1093/oxfordjournals.jncimonographs.a003477
6. Castle P. E. How Does Tobacco Smoke Contribute to Cervical Carcinogenesis? J. Virol. 2008, 82 (12), 6084–6086. https://doi.org/10.1128/JVI.00103-08
7. Long Fu Xi, Hughes J. P., Castle P. E., Edelstein Z. R., Wang C., Galloway D. A.,. Koutsky L. A., Kiviat N. B., Schiffman M. Viral Load in the Natural History of Human Papillomavirus Type 16 Infection: A Nested Case–control Study. J. Infect. Dis. 2011, 203 (10), 1425–1433. https://doi.org/10.1093/infdis/jir049
8. Yetimalar H., Kasap B., Cukurova K., Yildiz A., Keklik A., Soylu F. Cofactors in human papillomavirus infection and cervical carcinogenesis. Arch. Gynecol. Obstet. 2012, 285 (3), 805–810. https://doi.org/10.1007/s00404-011-2034-3
9. Jalil E. M., Bastos F. I., dos Santos Melli P. P., Duarte G., Simoes R. T., Yamamoto A. Y., de Morais R. A. A., Quintana S. M. HPV clearance in postpartum period of HIV positive and negative women: a prospective follow-up study. BMC Infect. Dis. 2013, V. 13, P. 564. https://doi.org/10.1186/1471-2334-13-564
10. Sundstrom K., Ploner A., Dahlstrom L. A., Palmgren J., Dillner J., Adami H.-O., Ylitalo N., Spar?n P. Prospective Study of HPV16 Viral Load and Risk of In Situ and Invasive Squamous Cervical Cancer. Cancer Epidemiol. Biomarkers Prev. 2013, 22 (1). 150–158. https://doi.org/10.1158/1055-9965.EPI-12-0953-T
11. Del R?o-Ospina L., Soto-De Le?n S. C., Camargo M., Moreno-P?rez D. A., S?nchez R., P?rez-Prados A., Patarroyo M. E., Patarroyo M. A. The DNA load of six high-risk human papillomavirus types and its association with cervical lesions. BMC Cancer. 2015, V. 15, P. 100. https://doi.org/10.1186/s12885-015-1126-z
12. Tulay P., Serakinci N. The role of human papillomaviruses in cancer progression. J. Cancer Metastasis Treat. 2016, V. 2, P. 201–213. https://doi.org/10.20517/2394-4722.2015.67
13. Doorbar J., Quintb W., Banksc L., Bravo I. G., Stoler M., Broker T. R., Stanley M. A. The Biology and Life-Cycle of Human Papillomaviruses. Vaccine. 2012, 30 (5), F55–70. https://doi.org/10.1016/j.vaccine.2012.06.083
14. Doorbar J., Egawa N., Griffin H., Kranjec C., Murakami I. Human papillomavirus molecular biology and disease association. Rev. Med. Virol. 2015, 25 (1), 2–23. https://doi.org/10.1002/rmv.1822
15. Egawa N., Doorbar J. The low-risk papillomaviruses. Virus Res. 2017, V. 231, P. 119–127. https://doi.org/10.1016/j.virusres.2016.12.017
16. Kajitani N., Satsuka A., Kawate A., Sakai H. Productive Lifecycle of Human Papillomaviruses that Depends Upon Squamous Epithelial Differentiation. Front Microbiol. 2012, V. 3, P. 152. https://doi.org/10.3389/fmicb.2012.00152
17. Akagi K., Li J., Broutian T. R., Xiao W., Jiang B., Rocco J. W., Teknos T. N., Kumar B., Wangsa D., He D., Ried T., Symer D. E., Gillison M. L. Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. Genome Res. 2014, 24 (2), 185–199. https://doi.org/10.1101/gr.164806.113
18. McBride A. A., Warburton A. The role of integration in oncogenic progression of HPV- associated cancers. PLoS Pathog. 2017, 13 (4), e1006211. https://doi.org/10.1371/journal.ppat.1006211
19. Pol S. B. V., Klingelhutz A. J. Papillomavirus E6 oncoproteins. Virology. 2013, V. 445, P. 115–137. https://doi.org/10.1016/j.virol.2013.04.026
20. Roman A., Munger K. The papillomavirus E7 proteins. Virology. 2013, 445 (1–2), 138–168. https://doi.org/10.1016/j.virol.2013.04.013
21. Maglennon G. A., Doorbar J. The Biology of Papillomavirus Latency. Open Virol. J. 2012, 6 (Suppl 2: M4), 190–197. https://doi.org/10.2174/1874357901206010190
22. Gravitt P. E. Evidence and Impact of Human Papillomavirus Latency. Open Virol. J. 2012, 6 (Suppl 2: M5), 198–203. https://doi.org/10.2174/1874357901206010198
23. Brown C. R., Leon M. L., Mu?oz K., Fagioni A., Amador L. G., Frain B., Tu W., Qadadri B., Brown D. R. Human papillomavirus infection and its association with cervical dysplasia in Ecuadorian women attending a private cancer screening clinic. Braz. J. Med. Biol. Res. 2009, 42 (7), 629–636. https://doi.org/10.1590/S0100-879X2009000700007
24. Kaspersen M. D., Larsen P. B., Ingerslev H. J., Fedder J., Petersen G. B., Bonde J., H?llsberg P. Identification of Multiple HPV Types on Spermatozoa from Human Sperm Donors. PLoS One. 2011, 6 (3), e18095.https://doi.org/10.1371/journal.pone.0018095
25. McBride A. A. Oncogenic human papillomaviruses. Phil. Trans. R. Soc. B. 2017, V. 372, P. 20160273. https://doi.org/10.1098/rstb.2016.0273
26. Gravitt P. E., Winer R. L. Natural History of HPV Infection across the Lifespan: Role of Viral Latency. Viruses. 2017, 9 (10), 267. https://doi.org/10.3390/v9100267
27. Plummer M., Schiffman M., Castle P. E. A 2-Year Prospective Study of Human Papillomavirus Persistence among Women with a Cytological Diagnosis of Atypical Squamous Cells of Undetermined Significance or Low-Grade Squamous Intraepithelial Lesion. J. Infect. Dis. 2007, V. 195, P. 1582–1589. https://doi.org/10.1086/516784
28. Burd E. M. Human Papillomavirus and Cervical Cancer. Clin. Microbiol. Rev. 2003, 16 (1), 1–17. https://doi.org/10.1128/CMR.16.1.1-17.2003
29. Marks M. A., Castle P. E., Schiffman M., Gravitt P. E. Evaluation of Any or Type-Specific Persistence of High-Risk Human Papillomavirus for Detecting Cervical Precancer. J. Clin. Microbiol. 2012, 50 (2), 300–306. https://doi.org/10.1128/JCM.05979-11
30. Sudenga S. L., Shrestha S. Key considerations and current perspectives of epidemiological studies on human papillomavirus persistence, the intermediate phenotype to cervical cancer. Int. J. Infect. Dis. 2013, 17 (4), e216–e220. https://doi.org/10.1016/j.ijid.2012.12.027
31. Schiffman M., Wentzensen N. Human Papillomavirus Infection and the Multistage Carcinogenesis of Cervical Cancer. Cancer Epidemiol. Biomarkers Prev. 2013, 22 (4), 553–560. https://doi.org/10.1158/1055-9965.EPI-12-1406
32. Santiago D. N., Heidbuechel J. P. W., Kandell W. M. at al. Fighting Cancer with Mathematics and Viruses. Viruses. 2017, 9 (9), 239. https://doi.org/10.3390/v9090239
33. Pongsumpun P. Mathematical Model of Cervical Cancer due to Human Papillomavirus Infection. Mathematical Methods in Science and Engineering. Proceedings of the 1st Int. Conference on Mathematical Methods & Computational Techniques in Science & Engineering (MMCTSE 2014) Athens, Greece – November 28–30, 2014. P. 157–161.
34. Ribassin-Majed L., Lounes R. A SIS model for Human Papillomavirus transmission. MAP5. 2011-03. 15 pages. 2010. https://hal.archives-ouvertes.fr/hal-00555733v1
35. Obeng-Denteh W., Afrifa R. T., Barnes B. at al. Modeling the Epidemiology of Human Papilloma Virus Infection and Vaccination and Its Impact on Cervical Cancer in Ghana. J. Sci. Res. Rep. 2014, 3 (19), 2501–2518. https://doi.org/10.9734/JSRR/2014/11019
36. Baussano I., Franceschi S., Plummer M. Infection transmission and chronic disease models in the study of infection-associated cancers. Br. J. Cancer. 2014, V. 110, P. 7–11. https://doi.org/10.1038/bjc.2013.740
37. Angstmann C. N., Henry B. I., McGann A. V. A Fractional Order Recovery SIR Model from a Stochastic Process. Bull. Math. Biol. 2016, V. 78, P. 468–499. https://doi.org/10.1007/s11538-016-0151-7
38. Lee S. L., Tameru A. M. A Mathematical Model of Human Papillomavirus (HPV) in the United States and its Impact on Cervical Cancer. J. Cancer. 2012, V. 3, P. 262–268. https://doi.org/10.7150/jca.4161
39. Dasbach E. J., Elbasha E. H., Insinga R. P. Mathematical Models for Predicting the Epidemiologic and Economic Impact of Vaccination against Human Papillomavirus Infection and Disease. Epidemiol. Rev. 2006, V. 28, P. 88–100. https://doi.org/10.1093/epirev/mxj006
40. Goldhaber-Fiebert J. D., Stout N. K., Ortendahl J., Kuntz K. M., Goldie S. J., Salomon J. A. Modeling human papillomavirus and cervical cancer in the United States for analyses of screening and vaccination. Popul. Health Metr. 2007, V. 5, P. 11. https://doi.org/10.1186/1478-7954-5-11
41. Smith R. J., Li J., Mao J., Sahai B. Using within-host mathematical modeling predict the long-term outcome of human papillomavirus vaccines. Canadian Applied Mathematics Quarterly. 2013, 21 (2), 281–299.
42. Haeussler K., Marcellusi A., Mennini F. S. Cost-Effectiveness Analysis of Universal Human Papillomavirus Vaccination Using a Dynamic Bayesian Methodology: The BEST II Study. Value Health. 2015, 18 (8), 956–968. https://doi.org/10.1016/j.jval.2015.08.010
43. Myers E. R., McCrory D. C., Nanda K., Bastian L., Matchar D. B. Mathematical Model for the Natural History of Human Papillomavirus Infection and Cervical Carcinogenesis. Am. J. Epidemiol. 2000, 151 (12), 1158–1171. https://doi.org/10.1093/oxfordjournals.aje.a010166
44. Bureau A., Shiborski S., Hughes J. P. Applications of continuous time hidden Markov models to the study of misclassified disease outcomes. Stat. Med. 2003. 22 (3), 441–462. https://doi.org/10.1002/sim.1270
45. Kang M., Lagakos S. W. Statistical methods for panel data from a semi-Markov process, with application to HPV. Biostatistics. 2007, 8 (2), 252–264. https://doi.org/10.1093/biostatistics/kxl006
46. Mitchell C. E., Hudgens M. G., King C. C. at al. Discrete-time semi-Markov modeling of human papillomavirus Persistence. Stat. Med. 2011, 30 (17), 2160–2170. https://doi.org/10.1002/sim.4257
47. Spitoni Cristian, Verduijn Marion and Putter Hein. Estimation and Asymptotic Theory for Transition Probabilities in Markov Renewal Multi–State Models. Int. J. Biostat. 2012, 8 (1), 23. https://doi.org/10.1515/1557-4679.1375
48. Longet S., Schiller J. T., Bobst M., Jichlinski P., Nardelli-Haefliger D. A Murine Genital-Challenge Model Is a Sensitive Measure of Protective Antibodies against Human Papillomavirus Infection. J. Virol. 2011, 85 (24), 13253–13259. https://doi.org/10.1128/JVI.06093-11
49. De Azambuja K., Barman P., Toyama J. Validation of an HPV16-mediated Carcinogenesis Mouse Model. In vivo. 2014, V. 28, P. 761–768. PMID: 25189887. PMCID: PMC5214601
50. Hu J., Budgeon L. R., Cladel N. M., Balogh K., Myers R., Cooper T. K., Christensen N. D. Tracking vaginal, anal and oral infection in a mouse papillomavirus infection model. J. Gen. Virol. 2015, 96 (12), 3554–3565. https://doi.org/10.1099/jgv.0.000295
51. Jiafen Hu, Nancy M. Cladel, Lynn R. Budgeon, Balogh K. K., Christensen N. D. The Mouse Papillomavirus Infection Model. Viruses. 2017, V. 9, P. 246. https://doi.org/10.3390/v9090246
52. Mandelbrot B. An information theory of the statistical structure of language. In Communication Theory. ed. W. Jackson, Betterworths. 1953, P.486–502.
53. Hartley R. V. L. Transmission of information. Bell Syst. Techn. J. 1928, 7 (3), 535–563. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
- Details
- Hits: 64
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 14, No. 5 , 2021
P. 63 ? 73, Bibliography 26 , Engl.
UDC: 579.6.086.83:577
https://doi.org/10.15407/biotech14.05.063
ANTIBIOTIC RESISTANCE OF LACTIC ACID BACTERY LEAVEN «VIVO PROBIOYOGURT»
I. M. Korniienko, L. S. Yastremska, L. Y. Polonchuk, M. M. Baranovskyi
National Aviation University, Kyiv, Ukraine
Lactic acid bacteria play a key role in human microecology and biotechnology – form organoleptic characteristics of products, increase the nutritional, including biological value of functional foods. Natural resistance to antibiotics is one of the important factors that determine the probiotic properties of lacto- and bifidobacteria.
Aim. Study of the antibiotic resistance of functionally active probiotic cultures of "VIVO probioyogurt" leaven to determine the possibility of using a fermented milk product, which is prepared on its basis, during antibiotic therapy to maintain and restore normal intestinal microflora.
Methods. Pure cultures of lactic acid bacteria (LAB) were selected for the study: (Lactobacillus delbrueckii ssp., L. acidophilus, L.casei, L. rhamnosus, L.paracasei, Streptococcus thermophilus, Bifidobacterium lactis (2 strains), B. infantis), which are part of leaven "VIVO probioyogurt" the quality of which is confirmed by certificates of the International Organization for Standardization ISO 9001: 2008, as well as ISO 22000: 2005. The method of the experiment consisted of the following stages: preparation of nutrient media ("Lactobacagar", "Bifidoagar", glucose-peptone medium), working solutions of antibiotics; working suspension of LAB; suspensions of cultures (lacto- and bifidobacteria), cultivation LAB on elective nutrient media with the addition of antibiotics and evaluation of research results. Determination of antibiotic resistance of LAB was performed by the method of double dilutions.
Results. The use of this technique enabled to establish the minimum inhibitory concentration (MIC) of antibiotics of different groups relative to the LAB. The results of the research were processed using a licensed computer program Microsoft Excel.
Conclusions. Evaluation of the results of studies to determine the MIC of antibiotics – benzylpenicillin, azithromycin, lincomycin, gentamicin sulfate, ceftriaxone, norfloxacin, amoxil, streptomycin, tetracycline, erythromycin in relation to IBD; fermented milk product, which was prepared on the basis of this starter culture, it was advisable to use during antibiotic therapy to restore and maintain normal intestinal microflora.
Key words: antibiotic resistance, lactic acid bacteria, minimum inhibitory concentration, yeast, probiotics.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Neposhyvaylenko N., Kornienko I. Current problems of individual health of adolescents and the use of modern food biotechnology to solve them. Collective Monograph: Actual problems of natural sciences: modern scientific discussions. Lublin: Universiti of life sciences in Lublin. 2020, P. 391–409.
2. Cherniak L., Mikhyeyev O., Madzhd S., Lapan O., Dmytrukha T., Kornienko I. The Usage of Plant Test Systems for the Determination of Phytotoxicity of Contaminated with Petroleum Products Soil. J. Ecol. Eng. 2021, 22 (6), 66–71. https://doi.org/10.12911/22998993/137363
3. Omelych I., Neposhyvailenko N., Zberovskyi O., Kornienko I. Improvement of the methodology for the assessment of soil biogenig pollution through the use of geological approaches and the use of information technologies. Eastern-European J. Enterpise Technol. 2021, 3 (10 (111)), 42–56. https://doi.org/10.15587/1729-4061.2021.235845
4. Alvira P., Tomas-Pejo E., Ballesteros M., Negro M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 2010, 101, 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093
5. Shenderov B. A. Medical microbial ecology and functional nutrition. Probiotics and functional nutrition. Moskva: Grant. 2001, 287 р.
6. Ganina V. I. Probiotics. Purpose, properties and bases of biotechnology. Moskva: MGUPB. 2001, 169 p.
7. Novik G. I., Samartsev A. A., Astapovich N. I., Kavrus M. A., Mikhaliuk A. N. Biological activity of probiotic microorganisms. Appl. Biochem. Microbiol. 2006, 42 (2), 166–172. https://doi.org/10.1134/S0003683806020098
8. Samoilov V. A., Nesterenko P. G., Suyunchev O. A. Probiotic lactic acid products. Dairy industry. 2007, V. 7, P. 45–47.
9. Shenderov B. A. Probiotics and functional nutrition. Moskva: Grant. 2001, 288 p.
10. Vinogradskaya S. E. Study of the sensitivity of lactic acid cultures and microflora of fermented milk products to antibiotics. Collection of scientific works of SevKavGTU, Series "Food". 2005, V. 1, P. 19–23.
11. Biofortification and functional products based on the Russian Empire for 2012–2016: the concept of state scientific and technical programs. URL: https://cutt.ly/pn1XW4n (date of the blast: 06/10/2021).
12. Concept of functional food. StudFiles: student file archive. URL: https://cutt.ly/Kn1MWcU (date of the blast: 06/10/2021).
13. State and development prospects of the functional food products market. Studbooks.net: Online student library. https://cutt.ly/3n1XDah (date of the blast: 06/10/2021).
14. KMU. Decree from 24 March 2021 p. № 305 "About the consolidated norms and the Order of organizing food for the pledges of education and child pledges of health improvement and recovery" [Electronic resource]. gov.ua. 2021. Mode of access to the resource:https://www.kmu.gov.ua/npas/pro-zatverdzhennya-norm-ta-poryadk-a305fbclid=IwAR15lfLHVBJLe-1PSPkXbCFxryfLeXjWG9LUP25xGkj39H
15. Karapetyan K. J. Comparative evaluation of a number of properties of new strains of 93 lactic acid bacteria. Biol. J. Armenia. 2009, 4 (61), 36–42.
16. Kitaevskaya S. V. Resistance of probiotic strains of lactic acid bacteria to antibiotics. Bulletin of Kazan Technol. Un-ty. 2012, 21 (15), 108–110.
17. Shchetko V. A., Golovneva N. A. Sensitivity of bifidobacteria to antibiotics of various classes. News of the National Academy of Sciences of Belarus. 2014, V. 2, 103–107.
18. Sukhorukova M. V. Antibiotic susceptibility of bacterial strains included in the linex probiotic. Clin. Microbiol. Antimicrobial Chemother. 2012, 3 (14), 245–251.
19. Determination of the sensitivity of microorganisms to antibacterial drugs: guidelines. Approved. G. G. Onishchenko. Moskva: Federal Center for State Sanitary and Epidemiological Supervision of the Ministry of Health of Russia. 2004, 91 p.
20. Savitskaya I. S., Zhubanova A. A., Kistaubaeva A. S., Bolekbaeva A. B. Antibiotic resistance of lactobacilli – probiotics. KazNU Bulletin. Biol. series. 2017, 56 (4), 222–227.
21. Bagdasaryan A. S., Tokaev E. S., Nekrasov E. A., Oleynik E. A. Antibiotic resistance of probiotic cultures included in the synbiotic. Proceedings of higher educational institutions. Food Technol. 2011, V. 2–3, P. 102–104.
22. Plotnikova D. T., Sidorenko A. V., Novik G. I. Study of antibiotic resistance of bacteria of the genera Lactococcus, Enterococcus, Leuconostoc. Vesti National Academy of Sciences of Belarus. 2016, V. 3, P. 94–100.
23. Lysak V. A, Zheldakova R. A., Fomina O. V. Microbiology. Workshop: manual. Minsk: BSU. 2015, 115 p.
24. DEN-1 Densitometer [Electronic resource]. Biosan Medical-Diological Research & Technologies. Access mode to the resource: https://biosan.lv/ru/products/den-1
25. Кorniienko I. M.,. Filimonenko O. Y., Kriukovska O. A., Hedzun Е. О., Hlushkov A. S. Research of efficiency of application of api-products in practice of preparation of biologically active functional lactic acid products. Collection of scientific works of the Dnieper State Technical University. 2019, 1 (34), 108–112.
26. Korniienkо I., Lutsenko O., Isaienko V., Baranovskyi M., Anatskyi A., Laricheva L. Optimization of technological parameters of nutrition mixture fermentation process with the use of spline interpolation. Chem. Technol.. 2021, 29 (1), 118–136.
- Details
- Hits: 53
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 14, No. 5 , 2021
P. 56-62, Bibliography 31, Engl.
UDC: 577.118
https://doi.org/10.15407/biotech14.05.056
STUDIES OF MAGNESIUM AND PHOSPHORUS COMBINED MEDICATION BASED ON CASEIN
Palonko R.I., Pavlyuk O.V., Arnauta O.V., Kalachniuk L.H.
National University of Life and Environmental Sciences of Ukraine
Aim. The Department of Biochemistry and Physiology of Animals, named after Academician Guly NUBIP of Ukraine, developed magnesium and phosphorus combined medication based on casein. Our aim was to test its bioavailability based on the ability to be hydrolyzed by a mixture of pancreatic digestive enzymes trypsin and chymotrypsin, also check the absence of cytotoxic effects on cell cultures.
Methods. To assess bioavailability, we used hydrolysis of the medication with a mixture of trypsin and chymotrypsin, followed by detection of hydrolysis products by polyacrylamide gel electrophoresis. A standard MTT-test performed on both MT-4 and Namalva cell lines was used to assess cytotoxic effects.
Results. Based on electrophoresis data, it was found that despite chemical modifications of the natural casein, the medication based on it is characterized by a high ability to hydrolyze by digestive enzymes under the same conditions as casein. Also, an MTT-test demonstrates that the medication has no cytotoxic properties against cell lines MT-4 and Namalva.
Conclusions. Since the negative effects of the drug associated with its digestibility and toxicity have not been observed, it is recommended to continue the study of its effects on living organisms.
Key words: magnesium, phosphorus, casein, chelate, in vitro, hydrolysis, cell culture, cytotoxicity, MTT reagent, NADH (nicotinamide adenine dinucleotide).
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Pasternak K., Kocot J., Horecka A. Biochemistry of Magnesium. J. Elem. 2010, 15 (3), 601–616. https://doi.org/10.5601/jelem.2010.15.3.601-616
2. Fawcett W. J., Haxby E. J., Male D. A. Magnesium: Physiology and Pharmacology. Brit. J. Anesthesia. 1999, 83 (2), 302–320. https://doi.org/10.1093/bja/83.2.302
3. Elin R. J. Magnesium Metabolism in Health and Disease. Disease-a-Month. 1988, 34 (4), 161–218. https://doi.org/10.1016/0011-5029(88)90013-2
4. Swaminathan R. Magnesium Metabolism and its Disorders. Clin. Biochem. Rev. 2003, 24 (2), 47–66. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855626/
5. Butafosfan: Committee for Veterinary Medicinal Products, Summary Report 1. The European Agency for the Evaluation of Medicinal Products, Veterinary Medicines, and Information Technology Unit. 1999, 630 (99), 1–3. https://www.ema.europa.eu/en/documents/mrl-report/butafosfan-summary-report-1-committee-veterinary-medicinal-products_en.pdf
6. Kreipe L., Deniz A., Bruckmaier R. M., van Dorland H. A. First Report about the Mode of Action of Combined Butafosfan and Cyanocobalamin on Hepatic Metabolism in Nonketotic Early Lactating Cows. J. Dairy Sci. 2011, 94 (10), 4904–4914. https://doi.org/10.3168/jds.2010-4080
7. Breymann C., Honegger C., H?sli I., Surbek D. Diagnosis and Treatment of Iron-Deficiency Anaemia in Pregnancy and Postpartum. Arch. Gynecol. Obstetrics. 2017, 296 (6), 1229–1234. https://doi.org/10.1007/s00404-017-4526-2
8. Fong J., Khan A. Hypocalcemia: Updates in Diagnosis and Management for Primary Care. Canadian Family Physician Medecin de Famille Canadien. 2012, 58 (2), 158–162. https://www.researchgate.net/publication/221968045_Hypocalcemia_Updates_in_diagnosis_and_management_for_primary_care
9. Shenkin A. Micronutrients in Health and Disease. Postgraduate Med. J. 2006, 82 (971), 559–567. https://doi.org/10.1136/pgmj.2006.047670
10. Robberecht H., Verlaet A., Breynaert A., De Bruyne T., Hermans N. Magnesium, Iron, Zinc, Copper, and Selenium Status in Attention-Deficit/Hyperactivity Disorder (ADHD). Molecules. 2020, 25 (19), 4440. https://doi.org/10.3390/molecules25194440
11. Hertrampf E., Olivares M. Iron Amino Acid Chelates. Int. J. Vitamin and Nutrition Res. 2004, 74 (6), 435–443. https://doi.org/10.1024/0300-9831.74.6.435
12. Chaudhary D. P., Boparai R. K., Bansal D. D. Implications of Oxidative Stress in High Sucrose Low Magnesium Diet-Fed Rats. Eur. J. Nutrition. 2007, 46 (7), 383–390. https://doi.org/10.1007/s00394-007-0677-4
13. Jeppsen R. B. Toxicology and Safety of Ferrochel and Other Iron Amino Acid Chelates. Archivos Latinoamericanos de Nutrici?n. 2001, 51 (1), 26–34. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0004-06222001000500006
14. Pineda O., Ashmead H. D. Effectiveness of Treatment of Iron-Deficiency Anemia in Infants and Young Children with Ferrous Bis-Glycinate Chelate. Nutrition. 2001, 17 (5), 381–384. https://doi.org/10.1016/S0899-9007(01)00519-6
15. Walker A. F., Marakis G., Christie S., Byng M. Mg Citrate Found More Bioavailable than Other Mg Preparations in a Randomized, Double-Blind Study. Magnesium Res. 2003, 16 (3), 183–191. https://pubmed.ncbi.nlm.nih.gov/14596323/
16. Jos? A. J., Vasconcelos A. R., Valzachi Rocha Maluf M. C. Iron Bisglycinate Chelate and Polymaltose Iron for the Treatment of Iron Deficiency Anemia: A Pilot Randomized Trial. Current Pediatric Rev. 2018, 14 (4), 261–268. https://doi.org/10.2174/1573396314666181002170040
17. Kalachnyuk L. H., Arnauta A. V., Veryovka V. M., Palonko R. I., Veterinary Drug Biophosphomag. UA Patent 139705. January 10, 2020.
18. Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals. Note for Guidance on Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals. In ICH Topic S6 (R1) Document. https://www.ema.europa.eu/en/ich-s6-r1-preclinical-safety-evaluation-biotechnology-derived-pharmaceuticals
19. Alarc?n F., Moyano F., D?az M. Use of SDS-Page in the Assessment of Protein Hydrolysis by Fish Digestive Enzymes. Aquaculture Int. 2001, V. 9, P. 255–267. https://doi.org/10.1023/A:1016809014922
20. Fotakis G., Timbrell J. A. In Vitro Cytotoxicity Assays: Comparison of LDH, Neutral Red, MTT and Protein Assay in Hepatoma Cell Lines Following Exposure to Cadmium Chloride. Toxicol. Letters. 2006, 160 (2), 171–177. https://doi.org/10.1016/j.toxlet.2005.07.001
21. Mosmann T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods. 1983, 65 (1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
22. Palonko R., Arnauta O., Prys-Kadenko V., Smirnov O., Kalachniuk L. Combined Preparation Based on Chelating Magnesium by Phosphorylated Casein: Characteristics of its Synthesis. ScienceRise: Biol. Sci. 2021, 1 (26), 27–31. https://doi.org/10.15587/2519-8025.2021.228758
23. Deng Yuxi, Gruppen H., Wierenga P. A. Comparison of Protein Hydrolysis Catalyzed by Bovine, Porcine, and Human Trypsins. J. Agric. Food Chem. 2018, 66 (16), 4219–4232. https://doi.org/10.1021/acs.jafc.8b00679
24. A Guide to Polyacrylamide Gel Electrophoresis and Detection. Bulletin 6040. Bio-Rad Laboratories, Inc. https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6040.pdf
25. Electrophoresis (2.2.31.). European Pharmacopoeia. Council of Europe. 2019, 10 (1), 51–57.
26. Ramos Y., Gutierrez E., Machado Y., S?nchez A., Castellanos-Serra L., Gonz?lez L. J., Fern?ndez-de-Cossio J., P?rez-Riverol Y., Betancourt L., Gil J., Padr?n G., Besada V. Proteomics Based on Peptide Fractionation by SDS. J. Proteome Res. 2008, 7 (6), 2427–2434. https://doi.org/10.1021/pr700840y
27. Macej D. O., Jovanovic T. S., Djurdjevic D. J. The Influence of High Temperature on Milk Proteins. Chem. Industry. 2002, V. 56, P. 123–132. https://doi.org/10.2298/HEMIND0203123M
28. Jovanovic S. SDS-PAGE Analysis of Soluble Proteins in Reconstituted Milk Exposed to Different Heat Treatments. Sensors. 2007, 7 (3), 371–383. https://doi.org/10.3390/s7030371
29. Miralles B., Sanch?n J., S?nchez-Rivera L., Mart?nez-Maqueda D., Le Gouar Y., Dupont D., Amigo L., Recio I. Digestion of Micellar Casein in Duodenum Cannulated Pigs: Correlation Between in Vitro Simulated Gastric Digestion and in Vivo Data. Food Chem. 2021, V. 343, P. 128424. https://doi.org/10.1016/j.foodchem.2020.128424
30. Oguri S., Kumazaki M., Kitou R., Nonoyama H., Tooda N. Elucidation of Intestinal Absorption of D, L-Amino Acid Enantiomers and Aging in Rats. Biochim. Biophys. Acta. 1999, 1472 (1–2), 107–114. https://doi.org/10.1016/S0304-4165(99)00110-5
31. Scheers E. M., Ekwall B., Dierickx P. J. In Vitro Long-Term Cytotoxicity Testing of 27 MEIC Chemicals on Hep G2 Cells and Comparison with Acute Human Toxicity Data. Toxicology in Vitro: An Int. J. Published in Association with BIBRA. 2001, 15 (2), 153–161. https://doi.org/10.1016/S0887-2333(00)00062-X
- Details
- Hits: 74
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 14, No. 5 , 2021
P. 49-55, Bibliography 15, Engl.
UDC: 579.222
https://doi.org/10.15407/biotech14.05.049
O. O. Tigunova 1, M. O. Umansikiy 2, V. V. Bratishko 2, A. V. Balabak 3, S. M. Shulga1
1SE “Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine”, Kyiv
2 National University of Life and Environmental science of Ukraine, Kyiv
3Uman National University of Horticulture, Uman
Aim. The purpose of the study was to investigate the effect of ultrasonic disintegration on the lignocellulosic raw materials (biomass of the non-cereal part of rape) with its subsequent use as a substrate for the production of biobutanol.
Methods. Butanol-producing strains and the biomass of the non-cereal part of rape Brassica napus were used in the present study. Ultrasonic disintegration of lignocellulosic raw materials was performed on the specially designed equipment.
Results. The effect of ultrasonic disintegration on lignocellulosic raw materials was investigated for further application in biofuel production based on microbiological conversion. The possibility of using the obtained components after the pre-treatment of lignocellulose by ultrasonic disintegration as a substrate for the microbiological synthesis of butanol was shown. The highest accumulation of butanol (2.4 g/l) was obtained with the use of 5% dry matter content in the medium, 5 min treatment and the specific power of ultrasonic disintegration of 0.72 W/ml.
Conclusions. The possibility of producer strains of the genus Clostridium to use cellulose in the fermentation process has been shown. When using ultrasonic disintegration for pretreatment of the non-cereal part of the biomass of rape, the accumulation of butanol increased by 3 folds.
Key words: ultrasonic disintegration, biobutanol, lignocellulosic raw materials, biofuel.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Tursi A. A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res. J. 2019, 6 (2), 962–979. https://doi.org/10.18331/BRJ2019.6.2.3
2. Karimi M., Jenkins B., Stroeve P. Ultrasound irradiation in the production of ethanol from biomass. Renewable and Sustainable Energy Rev. 2014, V. 40, P. 400–421. https://doi.org/10.1016/j.rser.2014.07.151
3. Kumar P., Barrett D. M., Delwiche M. J., Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 2009, 48 (8), 3713–3729. https://doi.org/10.1021/ie801542g
4. Alvira P., Tomas-Pejo E., Ballesteros M., Negro M. J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 2010, V. 101, P. 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093
5. Shulga S. M., Tigunova O. A., Blume Y. B. Lignocellulose as an alternative source for obtaining of biobutanol. Biotechnol. acta. 2013, 6 (2), 10–20 (In Ukrainian).https://doi.org/10.15407/biotech6.02.009
6. Jaismal N., Agarwal A., Tripathi A. D. Application of microorganisms for biofuel production. In book: Bioenergy Research: Basic andadvanced concepts. Clean Energy Production Technologies. Springer, Singapore. 2021, P. 35–72. https://doi.org/10.1007/978-981-33-4611-6_2
7. Konovalov S., Patrylak L., Zubenko S., Okhrimenko M., Yakovenko A., Levterov A., Avramenko A. Bench motor testing of blended fuels on their basis. Chemistry and Chemical Technol. 2021, 15 (1), 105–177. https://doi.org/10.23939/chcht15.01.105
8. Pinko T., Flores-Alicha X., Gernaey K. V., Junicke H. Alone or together? A review on pure and mixed microbial cultures for butanol production. Renewable and Sustainable Energy Rev. 2021, V. 147, P. 111244https://doi.org/10.1016/j.rser.2021.111244
9. Achkevych O. M. Substantiation of parameters of the drum mixer of feed additives. Abstract of the dissertation of Cand. tech. Science: 05.05.11. National University of Life and Environmental science of Ukraine. Kyiv. 2015, 24 p.
10. Tigunova O. O., Kamenskyh D. S., Tkachenko T. V., Yevdokymenko V. A., Kashkovskiy V. I., Rakhmetov D. B., Blume Ya. B., Shulga S. M. Biobutanol production from plant biomass The Open Agriculture J. 2020, V. 14, P. 187–197. https://doi.org/10.2174/1874331502014010187
11. Bundhoo Z. M. A., Mohee R. Ultrasound-assisted biological conversion of biomass and waste materials to biofuels: A review. Ultrason. Sonochem. 2017. https://doi.org/10.1016/j.ultsonch.2017.07.025
12. Sun R. C., Tomkinson J. Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason. Sonochem. 2002, V. 9, P. 85–93. https://doi.org/10.1016/S1350-4177(01)00106-7
13. Velmurugan R., Muthukumar K. Utilization of sugarcane bagasse for bioethanol production: Sono-assisted acid hydrolysis approach. Bioresour. Technol. 2011, V. 102, P. 7119–7123. https://doi.org/10.1016/j.biortech.2011.04.045
14. Raita S., Spalvins K., Blumberga D. Prospect on agro-industrial residues usage for biobutanol production. Agronomy Res. 2021, 19 (s1), 877–895. https://doi.org/10.115159/AR.21.084
15. Anukam A., Berghel J. Biomass pretreatment and characterization: A review. In book: Biotechnology application of biomass. 2020. Open access peer-reviewed chapter. https://doi.org/10.5772/intechopen.93607
- Details
- Hits: 69
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 14, No. 5 , 2021
P. 38-48, Bibliography 51, Engl.
UDC: 676.22.017
https://doi.org/10.15407/biotech14.05.038
PRACTICAL USE OF GOAT MILK AND COLOSTRUM
I. M. Voloshyna 1, 2, K.I.Soloshenko 1, I. V. Lych 1, L. V. Shkotova 3
1National University of Food Technologies, Kyiv, Ukraine
2National University of Technologies and Design, Kyiv, Ukraine
3Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine
This review presents the protein and amino acid composition of both goat colostrums and milk and describes the properties of goat colostrums and milk components. In addition, the prospects of use of goat milk and colostrum in the food and cosmetics industry and the feasibility of use of goat milk for baby feeding are shown. Functional foods produced from goat milk have antioxidant, anti-inflammatory, cardioprotective, antihypertensive and antiatherogenic activities in the human body. Goat milk cosmetics are very useful for maintaining a healthy skin and are effective in treatment of various skin diseases. Infant formula based on goat milk provides comfortable digestion for babies and are better at absorbing proteins, fats and other nutrients than infant formula based on cow’s milk.
Key words: goat colostrum, goat milk, proteins, amino acids, cosmetology, baby feeding.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Menchetti L., Traina G., Tomasello G., Casagrande-Proietti P., Leonardi L., Barbato O., Brecchia G. Potential benefits of colostrum in gastrointestinal diseases. Front Biosci. 2016, V. 8, P. 331?351. https://doi.org/10.2741/s467
2. Yadav A. K., Singh J., Yadav S. K. Composition, nutritional and therapeutic values of goat milk: A review. Asian J. Dairy Food Res. 2016, 35 (2), 96?102.https://doi.org/10.18805/ajdfr.v35i2.10719
3. Loch J. I., Bonarek P., Polit A., ?wi?tek S., Czub M., Ludwikowska M., Lewi?ski K. Conformational variability of goat ?-lactoglobulin: Crystallographic and thermodynamic studies. Int. J. Biol. Macromol. 2015, V. 72, P. 1283?1291. https://doi.org/10.1016/j.ijbiomac.2014.10.031
4. Caroprese M., Ciliberti M. G., Albenzio M., Marino R., Santillo A., Sevi A. Role of antioxidant molecules in milk of sheep. Small Ruminant Res. 2019, V. 180, P. 79?85. https://doi.org/10.1016/j.smallrumres.2019.07.011
5. Medeiros G. K. V. V., Queiroga R. C. R. E., Costa W. K. A., Gadelha C. A. A., Lacerda R. R., Lacerda J. T. J. G., Pinto L. S., Braganhol E., Teixeira F. C., Barbosa P. P. S., Campos M. I. F., Gon?alves G. F., Pess?a H. L. F., Gadelha T. S. Proteomic of goat milk whey and its bacteriostatic and antitumour potential. ?Int. J. Biol. Macromol. 2018, V. 113, P. 116?123. https://doi.org/10.1016/j.ijbiomac.2018.01.200
6. Soloshenko K. I., Lych I. V., Voloshyna I. M., Shkotova L. V. Polyfunctional properties of goat colostrum proteins and their use. Biopolymers and Cell. 2020, 36 (3), 197?209. (In Ukrainian). https://doi.org/10.7124/bc.000A2B
7. Lima М. J. R., Teixeira-Lemos E., Oliveira J., Teixeira-Lemos L. P., Monteiro A. M., Costa J. M. Nutritional and health profile of goat products: focus on health benefits of goat milk. Goat Sci. 2018, V. 10, P. 189?232. https://doi.org/10.5772/intechopen.70321
8. Sheybak V. M., Tis A. A., Sheybak L. N. Phagocytic activity of neonatal cord blood neutrophils in vitro in the presence of leucine. Eksperimental'naya i klinicheskaya farmakologiya. 2005, 68 (1), 48?49. (In Russian).
9. DeSimone R., Vissicchio F., Mingarelli C., De Nuccio C., Visentin S., Ajmone-Cat M. A., Minghetti L. Branched-chainaminoacids influence the immune properties ofmicroglial cells and their responsiveness to pro-inflammatory signals. Biochim. Biophys. Acta. 2013, 1832 (5), 650?659. https://doi.org/10.1016/j.bbadis.2013.02.001
10. Chen X. H., Liu S. R., Peng B., Li D., Cheng Z. X., Zhu J. X., Peng X. X. Exogenous L-valine promotes phagocytosis to kill multidrug-resistant bacterial pathogens. Front. Immunol. 2017, V. 8, P. 207. https://doi.org/10.3389/fimmu.2017.00207
11. Virarkar M., Alappat L., Bradford P. G., Awad A. B. L-arginine and nitric oxide in CNS function and neurodegenerative diseases. Crit. Rev. Food Sci. Nutr. 2013, 53 (11), 1157?1167. https://doi.org/10.1080/10408398.2011.573885
12. Nagahama M., Semba R., Tsuzuki M., Aoki E. L-arginine immunoreactive enteric glial cells in the enteric nervous system of rat ileum. Biol. Signals Recept. 2001, 10 (5), 336?340. https://doi.org/10.1159/000046901
13. Pickart L., Vasquez-Soltero J. M., Margolina A. GHK Peptide as a Natural Modulator of Multiple Cellular Pathways in Skin Regeneration. Biomed. Res. Int. 2015, P. 648108. https://doi.org/10.1155/2015/648108
14. Iseri V. J., Klasing K. C. Changes in the amount of lysine in protective proteins and immune cells after a systemic response to dead Escherichia coli: implications for the nutritional costs of immunity. Integr. Comp. Biol. 2014, 54 (5), 922?930. https://doi.org/10.1093/icb/icu111
15. Zhang Q., Chen X., Eicher S. D., Ajuwon K. M., Applegate T. J. Effect of threonine on secretory immune system using a chicken intestinal ex vivo model with lipopolysaccharide challenge. Poult. Sci. 2017, 96 (9), 3043?3051. https://doi.org/10.3382/ps/pex111
16. Fukuda K., Nishi Y., Usui T. Free amino acid concentrations in plasma, erythrocytes, granulocytes, and lymphocytes in umbilical cord blood, children, and adults. J. Pediatr. Gastroenterol. Nutr. 1984, 3 (3), 432?439. ttps://doi.org/10.1097/00005176-198406000-00022
17. Tyurenkov I. N., Samotruyeva M. A., Grazhdantseva N. N., Khlebtsova Ye. B., Berestovitskaya V. M., Vasil'yeva O. S. Immunomodulatory properties of the composition of phenotropil and glutamic acid. Biomeditsina. 2011, V. 3, P. 63?69. (In Russian).
18. Uyangaa E., Lee H. K., Eo S. K. Glutamine and leucine provide enhanced protective immunity against mucosal infection with herpes simplex virus type 1. Immune Netw. 2012, 12 (5), 196?206. https://doi.org/10.4110/in.2012.12.5.196
19. Cruzat V., Macedo Rogero M., Noel Keane K., Curi R., Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients. 2018, 10 (11), 1564. https://doi.org/10.3390/nu10111564
20. Cheng Z., Gatlin III D. M., Buentello A. Dietary supplementation of arginine and/or glutamine influences growth performance, immune responses and intestinal morphology of hybrid striped bass (Morone chrysops?Morone saxatilis). Aquaculture. 2012, V. 362, P. 39?43. https://doi.org/10.1016/j.aquaculture.2012.07.015
21. Ren W., Zou L., Ruan Z., Li N., Wang Y., Peng Y., Wu G. Dietary L-proline supplementation confers immunostimulatory effects on inactivated Pasteurella multocida vaccine immunized mice. Amino Acids. 2013, 45 (3), 555?561. https://doi.org/10.1007/s00726-013-1490-4
22. Reddy R. S., Ramachandra C. T., Hiregoudar S., Nidoni U., Ram J., Kammar M. Influence of processing conditions on functional and reconstitution properties of milk powder made from Osmanabadi goat milk by spray drying. Small Ruminant Res. 2014, 119 (1?3), 130?137. https://doi.org/10.1016/j.smallrumres.2014.01.013
23. Ribeiro A. C., Ribeiro S. D. A. Specialty products made from goat milk. Small Ruminant Res. 2010, V. 89, P. 225?233. https://doi.org/10.1016/j.smallrumres.2009.12.048
24. Wertz P. W. Epidermal lipids. Semin. Dermatol. 1992, 11 (2), 106?113.
25. Tomita M., Wakabayashi H., Yamauchi K., Teraguchi S., Hayasawa H. Bovine lactoferrin and lactoferricin derived from milk: production and applications. Biochem. Cell Biol. 2002, 80 (1), 109?112. https://doi.org/10.1139/o01-230
26. Anaeto M., Adeyeye J. A., Chioma G. O., Olarinmoye A. O., Tayo G. O. Goat products: Meeting the challenges of human health and nutrition. Agric. Biol. J. N. Am. 2010, 1 (6), 1231?1236. https://doi.org/10.5251/abjna.2010.1.6.1231.1236
27. Dawson B., Favaloro E. J. High rate of deficiency in the amino acids tryptophan and histidine in people with wounds: implication for nutrient targeting in wound management-a pilot study. Adv. Skin Wound Care. 2009, 22 (2), 79?82. https://doi.org/10.1097/01.ASW.0000345280.20779.17
28. Zenebe T., Ahmed N., Kabeta T., Kebede G. Review on Medicinal and Nutritional Values of Goat Milk. J. Nutr. 2014, 3 (3), 30?39. https://doi.org/10.5829/idosi.ajn.2014.3.3.93210
29. Khan I. T., Nadeem M., Imran M., Ullah R., Ajmal M., Jaspal M. H. Antioxidant properties of Milk and dairy products: a comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18 (1), 41. https://doi.org/10.1186/s12944-019-0969-8
30. S?nchez-Mac?as D., Moreno-Indias I., Castro N., Morales-Delanuez A., Arg?ello A. From goat colostrum to milk: physical, chemical, and immune evolution from partum to 90 days postpartum. J. Dairy Sci. 2014, 97 (1), 10?16. https://doi.org/10.3168/jds.2013-6811
31. Bergfeld W. F., Belsito D. V., Hill R. A., Klaassen C. D., Marks Jr J. G., Shank R. C., Snyder P.W. Safety Assessment of Milk Proteins and Protein Derivatives as Used in Cosmetics. 2017.
32. Ashraf Z., Jamil A., Umar S., Nadeem S. G. Antimicrobial Pattern Associated With Handmade Goat Milk Soap. J. Biol. Res. Appl. Sci. 2016, 7 (2), 19?23.
33. Jaya F., Thohari I., Susilorini T. E., Asmara D. R. Microbiological properties of preparing facial mask cream from goat milk kefir. IOP Conf. Ser: Earth Environ. Sci. 2019, 230 (1), 012105. https://doi.org/10.1088/1755-1315/230/1/012105
34. Kazimierska K., Kalinowska-Lis U. Milk Proteins-Their Biological Activities and Use in Cosmetics and Dermatology. Molecules. 2021, 26 (11), 3253. https://doi.org/10.3390/molecules26113253
35. Jirillo F., Martemucci G., D'Alessandro A. G., Panaro M. A., Cianciulli A., Superbo M., Magrone T. Ability of goat milk to modulate healthy human peripheral blood lymphomonocyte and polymorphonuclear cell function: in vitro effects and clinical implications. Curr. Pharm. Des. 2010, 16 (7), 870?876. https://doi.org/10.2174/138161210790883534
36. Abeij?n Mukdsi M. C., Haro C., Gonz?lez S. N., Medina R. B. Functional goat milk cheese with feruloyl esterase activity. J. Funct. Foods. 2013, 5 (2), 801?809.https://doi.org/10.1016/j.jff.2013.01.026
37. Yilmaz-Ersan L., Ozcan T., Akpinar-Bayizit A., Sahin S. The antioxidative capacity of kefir produced from goat milk. Int. J. Chem. Eng. Appl. 2016, 7 (1), 22?26. https://doi.org/10.7763/IJCEA.2016.V7.535
38. Moreno-Fernandez J., Diaz-Castro J., Alf?rez M. J., Boesch C., Nestares T., L?pez?Aliaga I. Fermented goat milk improves antioxidant status and protects from oxidative damage to biomolecules during anemia recovery. J. Sci. Food Agric. 2016, 97 (5), 1433?1442. https://doi.org/10.1002/jsfa.7882
39. Voloshyna І. М., Shkotova L. V. Lactobacillus bacteria: biological and therapeutic properties. Mikrobiol. Z. 2019, 81 (6), 131?146. https://doi.org/10.15407/microbiolj81.06.131
40. Ara?jo D. F. S., Guerra G. C. B., Pintado M. M. E., Sousa Y. R. F., Algieri F., Rodriguez-Nogales A., Ara?jo R. F. Jr., G?lvez J., Queiroga R. C. R. E., Rodriguez-Cabezas M. E. Intestinal anti-inflammatory effects of goat whey on DNBS-induced colitis in mice. PLoS One. 2017, 12 (9), e0185382. https://doi.org/10.1371/journal.pone.0185382
41. Jia R., Chen H., Chen H., Ding W. Effects of fermentation with Lactobacillus rhamnosus GG on product quality and fatty acids of goat milk yogurt. J. Dairy Sci. 2016, 99 (1), 221?227. https://doi.org/10.3168/jds.2015-10114
42. Aljutaily T., Huarte E., Martinez-Monteagudo S., Gonzalez-Hernandez J. L., Rovai M., Sergeev I. N. Probiotic-enriched milk and dairy products increase gut microbiota diversity: a comparative study. Nutr. Res. 2020, V. 82, P. 25?33. https://doi.org/10.1016/j.nutres.2020.06.017
43. Shu G., He Y., Wan H., Hui Y., Li H. Effects of prebiotics on antioxidant activity of goat milk fermented by Lactobacillus plantarum L 60. Acta Univ. Cibiniensis, Ser. E: Food Technol. 2017, 21 (2), 11?18. https://doi.org/10.1515/aucft-2017-0010
44. Arsen'yeva T. P., Lugova M. V., Yakovchenko N. V. Development of the composition of a high-protein frozen dessert for sports nutrition based on goat milk. Polzunovskiy vestnik. 2019, N 2, P. 26?31. (In Russian). https://doi.org/10.25712/ASTU.2072-8921.2019.02.006
45. Costa R. G., Beltr?o Filho E. M., de Sousa S., da Cruz G. R., Queiroga R. de C., da Cruz E. N. Physicochemical and sensory characteristics of yoghurts made from goat and cow milk. Anim. Sci. J. 2016, 87 (5), 703?709. https://doi.org/10.1111/asj.12435
46. Attalla N. R., Mohamed E. F., El-Reffaei W. H. M., Bassyoni N. I. Production and evaluation of sweet spreadable goat cheese. Int. J. Nutr. Food Sci. 2014, V. 3, P. 79?90. https://doi.org/10.11648/j.ijnfs.20140302.20
47. Zhou S. J., Sullivan T., Gibson R. A., L?nnerdal B., Prosser C. G., Lowry D. J., Makrides M. Nutritional adequacy of goat milk infant formulas for term infants: a double-blind randomised controlled trial. Br. J. Nutr. 2014, 111 (09), 1641?1651. https://doi.org/10.1017/S0007114513004212
48. Verduci E., D'Elios S., Cerrato L., Comberiati P., Calvani M., Palazzo S., Martelli A., Landi M., Trikamjee T., Peroni D. G. Cow's Milk Substitutes for Children: Nutritional Aspects of Milk from Different Mammalian Species, Special Formula and Plant-Based Beverages. Nutrients. 2019, 11 (8), 1739. https://doi.org/10.3390/nu11081739
49. Gallier S., Tolenaars L., Prosser C. Whole Goat Milk as a Source of Fat and Milk Fat Globule Membrane in Infant Formula. Nutrients. 2020, 12 (11), 3486. https://doi.org/10.3390/nu12113486
50. Maathuis A., Havenaar R., He T., Bellmann S. Protein digestion and quality of goat and cow milk infant formula and human milk under simulated infant conditions. J. Pediatr. Gastroenterol. Nutr. 2017, 65 (6), 661?666. https://doi.org/10.1097/MPG.0000000000001740
51. Hodgkinson A. J., Wallace O. A. M., Boggs I., Broadhurst M., Prosser C. G. Gastric digestion of cow and goat milk: Impact of infant and young child in vitro digestion conditions. Food Chem. 2018, V. 245, P. 275?281. https://doi.org/10.1016/j.foodchem.2017.10.028