- Details
- Hits: 69
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 14, No 1, 2021
Р. 81-87, Bibliography 17, English
Universal Decimal Classification: 579.64:633.11
https://doi.org/10.15407/biotech14.01.081
Taras Shevchenko National University of Kyiv, ESC "Institute of Biology and Medcine", Ukraine
The aim of the work was to determine the quantitative, qualitative composition and taxonomic structure of the eubacterial complex in the rhizosphere of sugar beet under different fertilizer systems.
Microbiological methods were used to determine the content of microorganisms in the rhizosphere of sugar beet. Molecular methods were used to determine taxonomic structure as well as metagenome of the eubacterial complex of microorganisms.
In the agrocenosis of sugar beet under different fertilizer systems the representatives of such families were prevailed as Alcaligenaceae, Pseudomonadaceae, Nitrososphaeraceae, Gaiellaceae, Micrococcaceae, Solirubrobacteraceae, Streptomycetaceae, Intrasporangiaceae, Solimonadaceae, Syntrophobacteraceae, Xanthomonadaceae, Enterobacteriaceae, Nocardioidaceae, Hyphomicrobiaceae, Comamonadaceae. It was found that under the biological system of fertilizers the species diversity of soil microbiota increased due to phyla: Alcaligenaceae, Gaiellaceae, Solirubrobacteraceae, Streptomycetaceae, Solimonadaceae, Syntrophobacteraceae, Xanthomonadaceae, Enterobacteriaceae, Nocardioidaceae, Hyphomicrobiaceae, Hyphomicrobiaceae.
It was detected that the basis of the eubacterial complex of sugar beet included representatives of phyla Proteobacteria, Actinobacteria, Gemmatimonadetes, Chloroflexi, Acidobacteria, Firmicutes, Planctomycetes, Verrucomicrobia, Bacteroidetes, and the absolute dominants were Proteobacteria – 76.9%, Actinobacteria – 13,4 %.
Key words: soil microbiota, fertilizer systems, metagenome, pyrosequencing, rhizosphere.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Nannipieri Р., Ascher J., Ceccherini M. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003, 54 (4), 655–670, https://doi.org/10.1046/j.1351-0754.2003.0556.x
2. Rose M. T., Cavagnaro T. R., Scanlan C. A., Rose T. J., Vancov T., Kimber S., Van Zwieten L. Impact of herbicides on soil biology and function. Advances in Agronomy. 2016, V. 136, Р. 133–220. https://doi.org/10.1016/bs.agron.2015.11.005
3. Patyka M. V., Tonkha O. L., Patyka T. I., Kiroiants M. O., Veretiuk S. V. Estimation of methagen of prokaryotic chernozem complex in agricultural use. Microbiol. J. 2018, 80 (6), 109–122. https://doi.org/10.15407/microbiolj80.06.109
4. Patyka M. V., Tanchyk S. P., Kolodiazhnyi O. Yu. Formation of biodiversity and phylotypic structure of eubacterial complex of typical chernozem in winter wheat cultivation. Reports of the NAS of Ukraine. 2012, No 11, P. 163–171.
5. Patyka N. V., Patyka V. F. Agrobiology of microorganisms: diversity, structural organization and functional features. Immunology and allergology: science and practice. 2014, V. 1, P. 77–78. https://doi.org/10.15407/agrisp1.03.069
6. Demyanyuk О. S., Symochko, L. Yu., Tertychna O. V. Modern methodical approaches to evaluation the ecological condition of soil by microbial activity. Problems of Bioindications and Ecology. 2017, 22 (1), 55–68.
7. Asad M., Asad U., Lavoie M., Song H., Jin Y., Fu Z., Qian H. Interaction of chiral herbicides with soil microorganisms, algae and vascular plants. Science of the Total Environment. 2017, V. 580, P. 1287–1299. https://doi.org/10.1016/j.scitotenv.2016.12.092
8. Liu W., Marsh T., Cheng H., Forney L. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Environ. Microbiol. 1997, V. 63, P. 4516–4522. https://doi.org/10.1128/AEM.63.11.4516-4522.1997
9. Imfeld G., Vuilleumier S. Measuring the effects of pesticides on bacterial communities in soil: A critical review. Eur. J. Soil Biol. 2012, V. 49, P. 22–30. https://doi.org/10.1016/j.ejsobi.2011.11.010
10. Felske A., Wolterink A., Van Lis R. Response of a soil bacterial community to grassland succession as monitored by 16S rRNA levels of the predominant ribotypes. Appl. Environ. Microbiol. 2000, V. 66, P. 3998–4003. https://doi.org/10.1128/AEM.66.9.3998-4003.2000
11. Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 2004, 68 (4), 669–685. https://doi.org/10.1128/MMBR.68.4.669-685.2004
12. Liuta V. A., Kononov O. V. Workshop on Microbiology: Textbook (Higher Education Institutes I-III RA). Kyiv: Medycyna. 2018, 184 p.
13. Iutynska H. O. Microbial biotechnology for the implementation of the new global program for sustainable development of the Ukrainian agrosphere. Agroecological J. 2017, No 2., P. 149–15511. https://doi.org/10.33730/2077-4893.2.2017.220171
14. Churikova V. V., Grabovich M. Ju. Morphology and cultivation of microorganisms: small workshop on microbiology. Voronezh: Voronezh State University. 2003. 55 p.
15. Kuczynski J., Stombaugh J., Anton Walters W. Using QIIME to analyze 16S rRNA gene sequences from Microbial Communities. Curr. Protoc. Bioinformatics 2012. Mode of access: https://doi.org/10.1002/0471250953.bi1007s36
16. Ronaghi M. Pyrosequencing: a tool for DNA sequencing analysis. Methods of Molecular Biology. 2004, V. 255, P. 211–219.
- Details
- Hits: 110
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 14, No 1, 2021
Р. 69-80, Bibliography 24, English
Universal Decimal Classification: 579.266
https://doi.org/10.15407/biotech14.01.069
QUANTITATIVE INDICATORS OF COPPER-RESISTANT MICROORGANISMS DISTRIBUTION IN NATURAL ECOSYSTEMS
O. А. Havryliuk1, V. М. Hovorukha1, А. V. Sachko2, G. V. Gladka2, О. B. Tashyrev1
1 Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
2 Yuriy Fedkovych Chernivtsi National University, Ukraine
Copper is a highly toxic metal common in both natural and man-made ecosystems. The goal of the work was to determine the level of resistance of microorganisms of natural ecosystems to cationic form and organometallic complex of Cu2+. Microorganisms of 9 natural ecosystems of five geographic zones (the Antarctic, the Arctic, the Dead Sea (Israel), middle latitude (Ukraine) and the equatorial zone of South America (Ecuador) were investigated. Resistance of microorganisms was determined by cultivation in the medium with concentration gradient of Сu2+. The amount of Cu2+-resistant microorganisms in natural ecosystems was determined by colony counting on nutrient agar with Сu2+ citrate and Cu2+ cation. The Cu(II) concentration in soil and clay samples was analyzed by atomic absorption spectroscopy method. We have confirmed the hypothesis that microorganisms resistant to toxic Cu2+ compounds in high concentrations exist in any natural ecosystem. The resistance to Cu2+ cation was 8 – 31 and 14 –140 times less than to Cu2+ citrate in nutrient and mineral agar media respectively. The amount of Cu2+-resistant microorganisms in natural ecosystems reached hundreds and thousands at the presence of 175…15 500 ppm Cu2+. Thus, the soils, clays and sands of natural ecosystems are a “genetic resource” of copper-resistant microorganisms that are promising for development of novel biotechnology of purification of copper-containing wastewater and soil bioremediation.
Key words: copper pollution, copper-resistant microorganisms, natral ecosystems, environmental biotechnologies.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Flemming C. A., Tr evors J. T. Copper toxicity and chemistry in the environment: a review. Water, Air, & Soil Pollution. 1989, 44 (1– 2), 143–158. https://doi.org/10.1007/BF00228784
2. Schouten C. The role of sulphur bacteria in the formation of the so-called sedimentary copper ores and pyritic ore bodies. Economic Geology. 1946, 41 (5), 517–538.
3. Ashida J., Higashi N., Kikuchi T. An electronmicroscopic study on copper precipitation by copper-resistant yeast cells. Protoplasma. 1963, 57 (1–4), 27–32. https://doi.org/10.1007/BF01252044
4. Dovgalyuk А. Environmental pollution by toxic metals and its indication by plant test systems. Studia Biologica. 2013, 7 (1), 197–204. https://doi.org/10.30970/sbi.0701.269
5. Masindi V., Muedi K. L. Environmental contamination by heavy metals. Heavy Metals. 2018, P. 115–133.https://doi.org/10.5772/intechopen.76082
6. Husak V. Copper and copper-containing pesticides: metabolism, toxicity and oxidative Stress. J. Vasyl Stefanyk Precarpathian National University. 2015, 2 (1), 38–50. https://doi.org/10.15330/jpnu.2.1.38-50
7. Andreazza R., Pieniz S., Okeke B. C., Camargo F. A. O. Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption. Brazil. J. Microbiol. 2011, 42 (1), 66–74. https://doi.org/10.1590/S1517-83822011000100009
8. Hovorukha V., Havryliuk O., Tashyreva H., Tashyrev O., Sioma I. Thermodynamic substantiation of integral mechanisms of microbial interaction with metals. Ecological Engineering and Environment Protection. 2018, V. 2, P. 55–63, https://doi.org/10.32006/eeep.2018.2.5563.
9. Kibria G. Trace/heavy metals and its impact on the environment, biodiversity and human health- a short review. Proj. Rech. 2016, P. 1–5. https://doi.org/10.13140/ RG.2.1.3102.2568
10. Stenberg B., Johansson M., Pell M., Sj?dahlSvensson K., Stenstr?m J., Torstensson L. Microbial biomass and activities in soil as affected by frozen and cold storage. Soil Biol. Biochem. 1998, 30 (3), 393–402. https://doi.org/10.1016/S0038-0717(97)00125-9
11. Baker T. H. W. Transportation, preparation, and storage of frozen soil samples for laboratory testing. Soil Specimen Preparation for Laboratory Testing. D. A. Sangrey, R. J. Mitchell, Eds. West Conshohocken, PA: ASTM International. 1976, P. 88–112.
12. Public Health England. Detection and enumeration of bacteria in swabs and other environmental samples. National Infection Service Food Water and Environmental Microbiology Standard Method. 2017, 4 (4).
13. Ogunfowokan A. O., Adekunle A. S., Oyebode B. A., Oyekunle J. A. O., Komolafe A. O., Omoniyi-Esan G. O. Determination of heavy metals in urine of patients and tissue of corpses by atomic absorption apectroscopy. Chemistry Africa. 2019, 2 (4), 699–712. https://doi.org/10.1007/s42250-019-00073-y
14. Prekrasna I. P., Tashyrev O. B. Copper resistant strain Candida tropicalis RomCu5 interaction with soluble and insoluble copper compounds. Biotechnol. acta. 2015, 8 (5), 93–102. https://doi.org/10.15407/biotech8.05.093
15. Samanovic M. I., Ding C., Thiele D. J., Darwin K. H. Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe. 2012, 11 (2), 106–115, https://doi.org/10.1016/j.chom.2012.01.009
16. Borkow G., Gabbay J. Copper as a biocidal tool. Current Medicinal Chemistry. 2005, 12 (18), 2163–2175.https://doi.org/10.2174/0929867054637617
17. Havryliuk O., Hovorukha V., Tashyrev O. The resistance of chernozem soil microorganisms to soluble copper compounds. Factors in Experimental Evolution of Organisms. 2018, V. 3826, P. 273–278. (In Ukrainian).
18. Kisel V. I. Soil pollution by heavy metals. Agroecological assessment of Ukrainian lands and placement of agricultural crops. Kyiv: Agricultural Science. 1997, 160 p. (In Russian).
19. Mineev V. G. Chemicalization of agriculture and natural environment. Moscow: Agropromizdat. 1990. (In Russian).
20. Ochoa-Herrera V., Le?n G., Banihani Q., Field J. A., Sierra-Alvarez R. Toxicity of copper(II) ions to microorganisms in biological wastewater treatment systems. Science of the Total Environment. 2011, V. 412–413, P. 380–385. https://doi. org/10.1016/j.scitotenv.2011.09.072
21. Rajbanshi A. Study on heavy metal resistant bacteria in Guheswori Sewage Treatment Plant. Our Nature. 2009, V. 6. https://doi. org/10.3126/on.v6i1.1655
22. Parungao M. Biosorption of copper, cadmium and lead by copper-resistant bacteria isolated from Mogpog River, Marinduque. Philippine J. Sci. 2007, 136 (2), 155–165.
23. Brahmaprakash G. P., Deva sia P., Jagadish K. S., Na tara jan K. A., Ramananda Rao G. Development of Thiobacillus ferrooxidans ATCC 19859 strains tolerant to copper and zinc. Bulletin of Materials Science. 1988, 10 (5), 461–465. https://doi.org/10.1007/BF02744659
24. Havryliuk O., Hovorukha V., Patrauchan M., Youssef N. H., Tashyrev O. Draft whole genome sequence for four highly copper resistant soil isolates Pseudomonas lactis strain UKR1, Pseudomonas panacis strain UKR2, and Pseudomonas veronii strains UKR3 and UKR4. Current Research in Microbial Sciences. 2020, V. 1, P. 44–52. https://doi.org/10.1016/j.crmicr.2020.06.002
- Details
- Hits: 81
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
EnglishBiotechnologia Acta V. 14, No 1, 2021
Р. 57-68, Bibliography 20,
Universal Decimal Classification: 581.192: 581.557
https://doi.org/10.15407/biotech14.01.057
Kyrychenko O. V., Kots S. Ya., Pukhtaievych P. P.
Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine
The effectiveness of the soybean plants spraying with the soybean seed lectin solution during vegetation (against the background of seed inoculation with nodule bacteria and without seed inoculation), as well as the effectiveness of the winter wheat plants spraying with lectin-bacterial composition in green-house and field experiments was investigated respectively. It was found that spraying of soybeans in the phase of two trifoliate leaves development with a specific lectin against the background of pre-sowing seed inoculation with rhizobia caused a significantly positive effect on the functional activity of the symbiotic apparatus. The nitrogen-fixing activity of the rhizosphere microbiota remained unchanged, which may indicate the vector of lectin action when sprayed through the plant. At the same time, the activation of plants vegetative growth was noted, which was maximally manifested by the height of their above ground part. The activity of exogenous sprayed lectin was less pronounced on the background of seed inoculation with rhizobia compared to non-inoculated plants. Plants spraying with soybean lectin against the background of seed inoculation provided an increase in harvest compared to non-inoculated control by 2.13 g/plant, but by the factor of lectin action this increase was only 0.19 g/plant and was insignificant. Non-inoculated soybean plants when sprayed with lectin formed a harvest that was significantly higher (by 0.64 g/plant) than that of plants in the absence of lectin. At this, the increase by the factor of lectin action was 22%. The spraying of winter wheat plants in the phase of mass spring germinations with the Azolec preparation (without pre-sowing seed inoculation) contributed to a significant increase in harvest by 1.6 c/ha. Therefore, the application of soybean and wheat plants spraying, respectively, with soybean seed lectin and lectin-bacterial Azolec preparation (wheat lectin),without involving pre-sowing seed inoculation, provided a greater degree of plants productive potential realization compared to control (without pre-sowing seed inoculation and plants spraying during vegetation).
Key words: soybean, rhizobia, soybean seed lectin, spraying, inoculation, nitrogen fixation, winter wheat, Azolec preparation, productivity.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Sharon N. Lectins: carbohydrate-specific reagents and biological recognition molecules. J. Biol. Chem. 2007, 282 (5), 2753–2764. https://doi.org/10.1074/jbc
2. Van Damme E. J. M., Lannoo N., Peumans W. J. Plant Lectins. Adv. Botanical Res. 2008, V. 48, P. 107–209. https://doi.org/10.1016/S0065-2296(08)00403-5
3. Hamid R., Masood A., Wani I. H., Rafiq S. Lectins: Proteins with diverse applications. J. Appl. Pharm. Sci. 2013, V. 3, P. 93–103. https://doi.org/10.7324/JAPS.2013.34. S18
4. Lagarda-Diaz I., Guzman-Partida A., VazquezMoreno L. Legume lectins: proteins with diverse applications. Int. J. Mol. Sci. 2017, 18 (6), 1242. https://doi.org/10.3390/ijms18061242
5. Coelho L. C. B. B., Silva P. M. S., Lima V. L. M., Pontual E. V., Paiva P. M. G., Napoleao Th. H., Correia M. T. S. Lectins, interconnecting proteins with biotechnological/ p h a r m a c o l o g i c a l a n d t h e r a p e u t i c application. Evid. Based Complement Alter. Med. 2017, V. 2017. https://doi.org/10.1155/2017/1594074
6. Mishra А., Behura А.,Mawatwal Sh., Kumar А., Naik L., Mohanty S. S., Manna D., Dokania Р., Mishra А., Patra S. К., Dhiman R. Structure-function and application of plant lectins in disease biology and immunity. Food Chem. Toxicol. 2019, V. 134, P. 110827. https://doi.org/10.1016/j. fct.2019.110827
7. Kyrychenko O. V. Phytolectins and Diazotrophs are the polyfunctional components of the complex biological compositions. Biotechnol. acta. 2014, 7 (1), 40–53. (In Ukrainian). https://doi.org/10.15407/biotech7.01.040
8. Jiang S., Ma Z., Ramachandran S. Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evol. Biol. 2010, 10 (1), 79–103. https://doi.org/10.1186/1471-2148-10-79
9. Kovalchuk N. V., Melnykova N. M., Musatenko L. I. Role of phytolectin in the life cycle of plants. Biopolymers and cell. 2012, 28 (3), 171–180. https://doi.org/10.7124/bc.00004A
10. Kandelinskaya O. L., Grischenko E. R., Ripinskaya K. Ju., Aleschenkova Z. M., Kartizhova L. E., Kuptsov V. N., Kup tsov N. S. Role of lectins in regulation of legumerhizobium symbiosis efficiency in lupin. Botanika (issledovaniya). Sb. Nauch. Tr.: In-t Experimental noy Botaniki NAN Belarusi. Minsk: In-t radiobiologii. 2015, No 44, P. 283–290. (In Russian).
11. Pavlovskaya N. E., Gagarina I. N. The physiological properties of plant lectins as a prerequisite for their application in biotechnology. Khimiya rastitelnogo syriya. 2017, No 1, P. 21–35. (In Russian). https://doi.org/10.14258/jcprm.2017011298
12. Pavlovskaya N. E., Gagarina I. N., Rogovin V. V., Borzenkova G. A., Mushtakova V. M., Fomina V. A. Means for presowing treatment of pea seeds: Pat. Rus. No 2372763. Оpubl. 20. 11. 2009, Byul. No 33. (In Russian).
13. Sytnikov D. M. Economic effect and application of rhizobial preparations modified with homologous lectins. Microbiol. Biotechnol. 2012, 1 (17), 75–84. (In Russian). https://doi.org/10.18524/2307-4663.2012.1(17).93385
14. Sergienko V. G., Kyrychenko O. V., Perkovs ka G. Yu. Method of using plant lectins to protect vegetable crops from diseases. Pat. nа kоrysnu model UA No 41723A01N 63/00, A01C 1/06/. Zayavnyk i patentovlasnyk Institute of Plant Protection of Ukrainian Academy of Agrarian Sciences. u200812612. Zayavl. 28. 10. 2008, Оpubl. 10. 06. 2009, Byul. No 11. (In Ukrainian).
15. Erohin A. I. The effectiveness of the preparation on the basis of lectins on leguminous crops in presowing treatment of seeds and vegetating pea plants. Zernobobovyye i krupyanyye kul’tury. 2019, 2 (30), 48–53. https://doi. org/10.24411/2309-348X-2019-11087
16. Erohin A. I., Pavlovskaya N. E. Efficacy of combined application of preparations for pea seeds. Zemledelie. 2016, No 4, P. 17–19. (In Russian).
17. State register of plant varieties suitable for dissemination in Ukraine in 2018. Kyiv: Ministerstvo Ahrarnoi Polityky ta Prodovolstva Ukrainy. 2018, 447 p. www. sops.gov.ua/uploads/page/5aa63108e441e. pdf (In Ukrainian).
18. Hardy R. W. F., Burns R. C., Holsten R. D. Application of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil. Biol. Biochem. 1973, 5 (1), 41–83. https:// www.ncbi.nlm.nih.gov/pmc/articles/ PMC1086994, https://doi.org/10.1016/0038-0717(73)90093-X
19. Thandiwe Nleye, Peter Sexton, Kyle Gustafson, Janet Moriles Miller. Soybean Growth Stages. In book: Grow Soybean: Best management Practices for Soybean Production. 2019, Ch. 3, P. 1–11. www. researchgate.net
20. Sytnikov D. M., Kots S. Ya., Malichenko S. M., Kirizii D. A. Photosynthetic rate and lectin activity of soybean leaves after inoculation with rhizobia together with homologous lectin. Rus. J. Plant Physiology. 2006, 53 (2), 169–175. (In Russian). https://doi.org/10.1134/S102144370602004X
- Details
- Hits: 115
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Ж-л "Biotechnologia Acta" Т. 14, № 1 , 2021
С. 46-56, библиогр. 61, англ.
УДК: 579.61 + 616.34-008.87
https://doi.org/10.15407/biotech14.01.046
FECAL MICROBIOTES TRANSPLANTATION TECHNOLOGIES: MEDICAL, BIOTECHNOLOGICAL AND REGULATORY ASPECTS
Bakalchuk M. M., Besarab O. B.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
Fecal microbiota transplantation (FMT) is a treatment method based on donor's fecal solution injection into the patient's gastrointestinal tract. FMT is effectively used in the treatment of recurrent Clostridium difficile infection. There is also growing interest in the therapeutic application of the method to treat metabolic, autoimmune and other disorders that was not previously associated with intestinal microbiota. Despite the promising results of FMT use, the organizational and legal matters and that of the safety FMT application have not yet been resolved in the European and Ukrainian medical community. The purpose of this review was to summarize information on the FMT application and the regulatory aspects of its use. The analysis of the practical instructions provisions of for FMT applying in clinical practice was carried out, and the bioethical problems associated with the FMT use were investigated.
Key words: intestinal microbiota, fecal microbiota transplantation, Clostridium difficile, inflammatory bowel disorder.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Neish A. S. Microbes in gastrointestinal health and disease. Gastroenterology. 2009, 136(1), 65–80. https://doi.org/10.1053/j.gastro.2008.10.080
2. Evdokimova N.V., Chernen’kaja T.V. Fecal Microbiota Transplantation: Past, Present and Future. Zhurnal im. N.V. Sklifosovskogo Neotlozhnaya medicinskaya pomoshch. 2019, 8(2), 160–165. (In Russian). https://doi.org/10.23934/2223-9022-2019-8-2-160-165
3. Clemente J. C., Manasson J., Scher J. U. The role of the gut microbiome in systemic inflammatory disease. BMJ (Clinical research ed.). 2018, 360. https://doi.org/10.1136/bmj.j5145
4. Mohajeri M. H., Brummer R., Rastall R. A., Weersma R. K., Harmsen H., Faas M., Eggersdorfer M. The role of the microbiome for human health: from basic science to clinical applications. European journal of nutrition. 2018, 57(Suppl 1), 1–14.https://doi.org/10.1007/s00394-018-1703-4
5. Tseng CH, Wu CY. The gut microbiome in obesity. J Formos Med Assoc. 2019, 118 Suppl 1:S3-S9. https://doi.org/10.1016/j.jfma.2018.07.009
6. Vasil’ev A. N., Gorjachev D. V., Gavrishina E. V., Nijazov R. R., Seliverstov Ju. A., & Digtjar’ A. V. Fecal microbiota transplantation: possible therapeutic approaches and regulatory issues. Biopreparaty. Profilaktika, diagnostika, lechenie. 2015, 2 (54), 15-23. (In Russian).
7. Wang S., Xu M., Wang W., Cao X., Piao M., Khan S., Yan F., Cao H., Wang B. Systematic Review: Adverse Events of Fecal Microbiota Transplantation. PLoS One. 2016, 11(8). https://doi.org/10.1371/journal.pone.0161174
8. de Groot P.F., Frissen M. N., de Clercq N. C., Nieuwdorp M. Fecal microbiota transplantation in metabolic syndrome: History, present and future. Gut Microbes. 2017, 8(3), 253-267. https://doi.org/10.1080/19490976.2017.1293224
9. Rubin T. A., Gessert C. E., Aas J., Bakken J. S. Fecal microbiome transplantation for recurrent Clostridium difficile infection: report on a case series. Anaerobe. 2013, 19, 22–26. https://doi.org/10.1016/j.anaerobe.2012.11.004
10. Kelly B. J., Tebas P. Clinical Practice and Infrastructure Review of Fecal Microbiota Transplantation for Clostridium difficile Infection. Chest. 2018, 153(1), 266–277. https://doi.org/10.1016/j.chest.2017.09.002
11. Czepiel J., Dr??d? M., Pituch H., Kuijper E. J., Perucki W., Mielimonka A., Goldman S., Wulta?ska D., Garlicki A., Biesiada G. Clostridium difficile infection: review. European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology. 2019, 38(7), 1211–1221. https://doi.org/10.1007/s10096-019-03539-6
12. Hubska O. Yu., Hridniev O. Ye. . Fecal microbiota transplantation: a modern, effective and safe method of treating Clostridium difficile infection. Suchasna Hastroenterolohiia. 2019, 3, 66–78. (In Ukrainian). https://doi.org/10.30978/MG-2019-3-66
13. Cammarota G., Ianiro G., Tilg H., et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017, 66(4), 569-580. https://doi.org/10.1136/gutjnl-2016-313017
14. Tang G., Yin W., Liu W. Is frozen fecal microbiota transplantation as effective as fresh fecal microbiota transplantation in patients with recurrent or refractory Clostridium difficile infection: A metaanalysis? Diagn Microbiol Infect Dis. 2017, 88(4), 322-329. https://doi.org/10.1016/j.diagmicrobio.2017.05.007
15. Lee C. H., Steiner T., Petrof E. O., Smieja M., Roscoe D., Nematallah A., Weese J. S., Collins S., Moayyedi P., Crowther M., Ropeleski M. J., Jayaratne P., Higgins D., Li Y., Rau N. V., Kim P. T. Frozen vs Fresh Fecal Microbiota Transplantation and Clinical Resolution of Diarrhea in Patients With Recurrent Clostridium difficile Infection: A Randomized Clinical Trial. JAMA. 2016, 315(2), 142-149. https://doi.org/10.1001/jama.2015.18098
16. Gough E., Shaikh H., Manges A.R. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis. 2011, 53(10), 994-1002. https://doi.org/10.1093/cid/cir632
17. Vindigni S.M, Surawicz C.M. Fecal Microbiota Transplantation. Gastroenterol. Clin. North. Am. 2017, 46(1), 171-185. https://doi.org/10.1016/j.gtc.2016.09.012.
18. Mattila E., Uusitalo-Sepp?l? R., Wuorela M., Lehtola L., Nurmi H., Ristikankare M., Moilanen V., Salminen K., Sepp?l? M., Mattila P. S., Anttila V. J., Arkkila P. Fecal transplantation, through colonoscopy, is effective therapy for recurrent Clostridium difficile infection. Gastroenterology. 2012, 142(3), 490–496. https://doi.org/10.1053/j.gastro.2011.11.037
19. Kelly C. R., de Leon L., Jasutkar N. Fecal microbiota transplantation for relapsing Clostridium difficile infection in 26 patients: methodology and results. Journal of clinical gastroenterology. 2012, 46(2), 145–149. https://doi.org/10.1097/MCG.0b013e318234570b
20. Yoon S. S., Brandt L. J. Treatment of refractory/recurrent C. difficile-associated disease by donated stool transplanted via colonoscopy: a case series of 12 patients. Journal of clinical gastroenterology. 2010, 44(8), 562–566. https://doi.org/10.1097/MCG.0b013e3181dac035
21. Kassam Z., Hundal R., Marshall J. K., Lee C. H. Fecal transplant via retention enema for refractory or recurrent Clostridium difficile infection. Arch. Intern. Med. 2012, 172(2), 191–193. https://doi.org/10.1001/archinte.172.2.191
22. Gweon T. G., Kim J., Lim C. H., Park J. M., Lee D. G., Lee I. S., Cho Y. S., Kim S. W., Choi M. G. Fecal Microbiota Transplantation Using Upper Gastrointestinal Tract for the Treatment of Refractory or Severe Complicated Clostridium difficile Infection in Elderly Patients in Poor Medical Condition: The First Study in an Asian Country. Gastroenterology research and practice. 2016. https://doi.org/10.1155/2016/2687605
23. Kao D., Roach B., Silva M., Beck P., Rioux K., Kaplan G. G., Chang H. J., Coward S., Goodman K. J., Xu H., Madsen K., Mason A., Wong G. K., Jovel J., Patterson J., Louie T. Effect of Oral Capsule- vs ColonoscopyDelivered Fecal Microbiota Transplantation on Recurrent Clostridium difficile Infection: A Randomized Clinical Trial. JAMA. 2017, 318(20), 1985–1993. https://doi.org/10.1001/jama.2017.17077
24. Smits L. P., Bouter K. E., de Vos W. M., Borody T. J., Nieuwdorp M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology. 2013 Nov, 145(5), 946-53. https://doi.org/10.1053/j.gastro.2013.08.058
25. Kassam Z., Lee C. H., Yuan Y., Hunt R. H. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. The American journal of gastroenterology. 2013, 108(4), 500–508. https://doi.org/10.1038/ajg.2013.59
26. Agrawal M., Aroniadis O. C., Brandt L. J., Kelly C., Freeman S., Surawicz C., Broussard E., Stollman N., Giovanelli A., Smith B., Yen E., Trivedi A., Hubble L., Kao D., Borody T., Finlayson S., Ray A., Smith R. The Longterm Efficacy and Safety of Fecal Microbiota Transplant for Recurrent, Severe, and Complicated Clostridium difficile Infection in 146 Elderly Individuals. Journal of clinical gastroenterology. 2016, 50(5), 403–407. https://doi.org/10.1097/MCG.0000000000000410
27. Girotra M., Garg S., Anand R., Song Y., Dutta S. K. Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection in the Elderly: Long-Term Outcomes and Microbiota Changes. Digestive diseases and sciences. 2016, 61(10), 3007–3015.https://doi.org/10.1007/s10620-016-4229-8
28. Khoruts A., Rank K. M., Newman K. M., Viskocil K., Vaughn B. P., Hamilton M. J., Sadowsky M. J. Inflammatory Bowel Disease Affects the Outcome of Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. 2016, 14(10), 1433–1438. https://doi.org/10.1016/j.cgh.2016.02.018.
29. Van Nood E., Vrieze A., Nieuwdorp M., Fuentes S., Zoetendal E. G., de Vos W. M., Visser C. E., Kuijper E. J., Bartelsman J. F., Tijssen J. G., Speelman P., Dijkgraaf M. G., Keller J. J. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 2013 Jan 31, 368(5), 407-15. https://doi.org/10.1056/NEJMoa1205037
30. Borody T. J., Brandt L. J., Paramsothy S. T h e r a p e u t i c f a e c a l m i c r o b i o t a transplantation: current status and future developments. Curr Opin Gastroenterol. 2014, 30(1), 97-105. https://doi.org/10.1097/MOG.0000000000000027
31. Uygun A., Ozturk K., Demirci H., Oger C., Avci I. Y., Turker T., Gulsen M. Fecal microbiota transplantation is a rescue treatment modality for refractory ulcerative colitis. Medicine. 2017, 96(16). https://doi.org/10.1097/MD.0000000000006479
32. Borody T., Wettstein A., Campbell J. et al. Fecal microbiota transplantation in ulcerative colitis: review of 24 years experience [abstract]. Am. J. Gastroenterol. 2012, 107. https://doi.org/10.14309/00000434-201210001-01644
33. Vermeire S., Joossens M., Verbeke K. et al. Pilot study on the safety and efficacy of fecal microbiota transplantation in refractory Crohn’s disease. Gastroenterology. 2012, 142, 360. https://doi.org/10.1016/S0016-5085(12)61356-0
34. Green J. E., Davis J. A., Berk M., Hair C., Loughman A., Castle D., Athan E., Nierenberg A. A., Cryan J. F., Jacka F., Marx W. Efficacy and safety of fecal microbiota transplantation for the treatment of diseases other than Clostridium difficile infection: a systematic review and meta-analysis. Gut microbes. 2020, 12(1), 1–25. https://doi.org/10.1080/19490976.2020.1854640
35. Johnsen P. H., Hilp?sch F., Cavanagh J. P., Leikanger I. S., Kolstad C., Valle P. C., Goll R. Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, singlecentre trial. The lancet. Gastroenterol. hepatol. 2018, 3(1), 17–24. https://doi.org/10.1016/S2468-1253(17)30338-2
36. Ianiro G., Eusebi L. H., Black C. J., Gasbarrini A., Cammarota G., Ford A. C. Systematic review with meta-analysis: efficacy of faecal microbiota transplantation for the treatment of irritable bowel syndrome. Alimentary Pharmacology & Therapeutics. 2019, 50(3), 240–248. https://doi.org/10.1111/apt.15330
37. Pinn D. M., Aroniadis O. C., Brandt L. J. Follow-up study of fecal microbiota transplantation (FMT) for the treatment of refractory irritable bowel syndrome (IBS) [abstract]. ACG 2013 Annual Scientific Meeting and Postgraduate Course; 11–16 October 2013 San Diego, CA: San Diego Convention Center. https://doi.org/10.14309/00000434-201310001-01862
38. Halkj?r S. I., Christensen A. H., Lo B., Browne P. D., G?nther S., Hansen L. H., Petersen A. M. Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebo-controlled study. Gut. 2018, 67(12), 2107–2115. https://doi.org/10.1136/gutjnl-2018-316434
39. Chen F., Stappenbeck T. S. Microbiome control of innate reactivity. Current opinion in immunology. 2019, 56, 107–113. https://doi.org/10.1016/j.coi.2018.12.003
40. McCoy K. D., Ignacio A., Geuking M. B. Microbiota and Type 2 immune responses. Current opinion in immunology. 2019, 54, 20–27. https://doi.org/10.1016/j.coi.2018.05.009
41. Xu M. Q., Cao H. L., Wang W. Q., Wang S., Cao X. C., Yan F., Wang B. M. Fecal microbiota transplantation broadening its application beyond intestinal disorders. World journal of gastroenterology. 2015, 21(1), 102–111. https://doi.org/10.3748/wjg.v21.i1.102.
42. Borody T. J., Campbell J., Torres M. et al. Reversal of idiopathic thrombocytopenic purpura (ITP) with fecal microbiota transplantation (FMT) [abstract]. Am J Gastroenterol. 2011, 106, 352. https://doi.org/10.14309/00000434-201110002-00941
43. Borody T. J., Leis S. M., Campbell J., Torres M., Nowak A. Fecal microbiota transplantation (FMT) in multiple sclerosis (MS). Am J Gastroenterol. 2011, 106, 352. https://doi.org/10.14309/00000434-201110002-00942
44. Ridaura V. K., Faith J. J., Rey F. E., Cheng J., Duncan A. E., Kau A. L., Griffin N. W., Lombard V., Henrissat B., Bain J. R., Muehlbauer M. J., Ilkayeva O., Semenkovich C. F., Funai K., Hayashi D. K., Lyle B. J., Martini M. C., Ursell L. K., Clemente J. C., Van Treuren W., Gordon J. I. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013, 341(6150). https://doi.org/10.1126/science.1241214.
45. Vrieze A., Van Nood E., Holleman F., Saloj?rvi J., Kootte R. S., Bartelsman J. F., Dallinga-Thie G. M., Ackermans M. T., Serlie M. J., Oozeer R., Derrien M., Druesne A., Van Hylckama Vlieg J. E., Bloks V. W., Groen A. K., Heilig H. G., Zoetendal E. G., Stroes E. S., de Vos W. M., Hoekstra J. B., Nieuwdorp M. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012, 143(4), 913–6.e7. https://doi.org/10.1053/j.gastro.2012.06.031
46. Fischer M., Sipe B., Torbeck M., Xu H., Kassam Z., Allegretti J. R. Does fecal microbiota transplantation from an obese donor lead to weight gain? a case series of 70 recipients. Gastroenterology. 2017, 152(5), p. S1004. https://doi.org/10.1016/S0016-5085(17)33408-X
47. Kang D. W., Adams J. B., Gregory A. C., Borody T., Chittick L., Fasano A., Khoruts A., Geis E., Maldonado J., McDonough-Means S., Pollard E. L., Roux S., Sadowsky M. J., Lipson K. S., Sullivan M. B., Caporaso J. G., Krajmalnik-Brown R. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017, 5(1), 10. https://doi.org/10.1186/s40168-016-0225-7
48. Mole B. FDA gets to grips with faeces. Nature. 2013, 498(7453), 147–148. https://doi.org/10.1038/498147a.
49. De Vrieze J. Medical research. The promise of poop. Science (New York, N.Y.). 2013, 341(6149), 954–957. https://doi.org/10.1126/science.341.6149.954
50. U.S. Food and Drug Administration: FDA’s Public Workshop; Fecal Microbiota for Transplantation — Presentations. Available at: http://www.fda.gov/ BiologicsBloodVaccines/NewsEvents/ WorkshopsMeetingsConferences/ ucm352636.htm (accessed 20 January 2021).
51. Roldan G. A., Cui A. X., Pollock N. R. Assessing the Burden of Clostridium difficile Infection in Low- and Middle-Income Countries. Journal of clinical microbiology. 2018, 56(3), e01747-17. https://doi.org/10.1128/JCM.01747-17
52. Zhang S., Palazuelos-Munoz S., Balsells E. M., Nair H., Chit A., Kyaw M. H. Cost of hospital management of Clostridium difficile infection in United States-a meta-analysis and modelling study. BMC infectious diseases. 2016, 16(1), 447. https://doi.org/10.1186/s12879-016-1786-6
53. Reigadas Ram?rez E., Bouza E. S. Economic Burden of Clostridium difficile Infection in European Countries. Advances in experimental medicine and biology. 2 0 1 8 , 1 0 5 0 , 1 – 1 2 . h t t p s : / / d o i . org/10.1007/978-3-319-72799-8_1.
54. Konijeti G. G., Sauk J., Shrime M. G., Gupta M., Ananthakrishnan A. N. Costeffectiveness of competing strategies for management of recurrent Clostridium difficile infection: a decision analysis. Clin. Infect. Dis. 2014 Jun, 58(11), 1507-14. https://doi.org/10.1093/cid/ciu128.
55. Lapointe-Shaw L., Tran K. L., Coyte P. C., Hancock-Howard R. L., Powis J., Poutanen S. M., Hota S. Cost-Effectiveness Analysis of Six Strategies to Treat Recurrent Clostridium difficile Infection. PLoS One. 2016 Feb 22, 11(2). https://doi.org/10.1371/journal.pone.0149521
56. Zainab I. Abdali, Tracy E. Roberts, Pelham Barton, Peter M. Hawkey. Economic evaluation of Faecal microbiota transplantation compared to antibiotics for the treatment of recurrent Clostridioides difficile infection. EClinicalMedicine. 2020. https://doi.org/10.1016/j.eclinm.2020.100420
57. Ma Yonghui, Liu Jiayu, Rhodes Catherine, Nie Yongzhan, Zhang Faming. Ethical Issues in Fecal Microbiota Transplantation in Practice. The American Journal of Bioethics. 2017, 17, 34-45. https://doi.org/10.1080/15 265161.2017.1299240.
58. Zoya Grigoryan, Michael J. Shen, Shaina W. Twardus, Marc M. Beuttler, Lea Ann Chen, Alison Bateman-House. Fecal microbiota transplantation: Uses, questions, and ethics. Medicine in Microecology. 2020, 6. https://doi.org/10.1016/j.medmic.2020.100027
59. Bokulich N. A., Chung J., Battaglia T., Henderson N., Jay M., Li H., D Lieber A., Wu F., Perez-Perez G. I., Chen Y., Schweizer W., Zheng X., Contreras M., Dominguez-Bello M. G., Blaser M. J. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science translational medicine. 2016, 8(343), 343ra82. https://doi.org/10.1126/scitranslmed.aad7121
60. Fujimura K. E., Sitarik A. R., Havstad S., Lin D. L., Levan S., Fadrosh D., Panzer A. R., LaMere B., Rackaityte E., Lukacs N. W., Wegienka G., Boushey H. A., Ownby D. R., Zoratti E. M., Levin A. M., Johnson C. C., Lynch S. V. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nature medicine. 2016, 22(10), 1187–1191. https://doi.org/10.1038/nm.4176
61. Zhang F., Zhang T., Zhu H., Borody T. J. Evolution of fecal microbiota transplantation in methodology and ethical issues. Current opinion in pharmacology. 2019, 49, 11–16. https://doi.org/10.1016/j.coph.2019.04.004
- Details
- Hits: 93
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 14, No 1, 2021
Р. 38-45, Bibliography 22, English
Universal Decimal Classification: 577.218
https://doi.org/10.15407/biotech14.01.038
O. Lykhenko, A. Frolova, M. Obolenska
Institute of Molecular Biology and Genetics of the National Academy of the Sciences of Ukraine, Kyiv
The purpose of the study was to provide the pipeline for processing of publicly available unprocessed data on gene expression via integration and differential gene expression analysis.
Data collection from open gene expression databases, normalization and integration into a single expression matrix in accordance with metadata and determination of differentially expressed genes were fulfilled. To demonstrate all stages of data processing and integrative analysis, there were used the data from gene expression in the human placenta from the first and second trimesters of normal pregnancy.
The source code for the integrative analysis was written in the R programming language and publicly available as a repository on GitHub. Four clusters of functionally enriched differentially expressed genes were identified for the human placenta in the interval between the first and second trimester of pregnancy.
Immune processes, developmental processes, vasculogenesis and angiogenesis, signaling and the processes associated with zinc ions varied in the considered interval between the first and second trimester of placental development. The proposed sequence of actions for integrative analysis could be applied to any data obtained by microarray technology.
Key words: microarray, transcript, integrative analysis, Bayesian empirical method, meta-analysis, differentially expressed genes, placenta.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Taminau J., Lazar C., Meganck S., Now? A. Comparison of merging and meta-analysis as alternative approaches for integrative gene expression analysis. ISRN Bioinform. 2014,V. 2014, P. 345106. https://doi.org/10.1155/2014/345106
2. Uitert M., Moerland P. D., Enquobahrie D. A., Laivuori H., Joris A. M. van der Post, RisStalpers C., Afink G. B. Meta-analysis of placental transcriptome data identifies a novel molecular pathway related to preeclampsia. PLoS One. 2015, V. 10, P. e0132468. https://doi.org/10.1371/journal.pone.0132468
3. Cosmin L., Meganck S., Taminau J., Steenhoff D., Coletta A., Molter C., WeissSol?s D. Y., Duque R., Bersini H., Now? A. Batch effect removal methods for microarray gene expression data integration: a survey. Briefings Bioinf. 2013, 14 (4), 469–490. https://doi.org/10.1093/bib/bbs037
4. Turnbull A. K., Kitchen R. R., Larionov A. A., Renshaw L., Dixon J., Sims A. H. Direct integration of intensity-level data from Affymetrix and Illumina microarrays improves statistical power for robust reanalysis. BMC Medical Genomics. 2012, 5 (1), 35. https://doi.org/10.1186/1755-8794-5-35
5. Tseng G. C., Ghosh D., Feingold E. Comprehensive literature review and statistical considerations for microarray metaanalysis. Nucleic acids research. 2012, 40 (9), 3785–99. https://doi.org/10.1093/nar/gkr1265
6. Lykhenko O., Frolova A., Obolenska M. Creation of gene expression database on preeclampsiaaffected human placenta. Biopolym. Cell. 2017, 33 (6), 442–452. https://doi.org/10.7124/bc.000967
7. Gautier L., Cope L., Bolstad B. M., Irizarry R. A. Affy — analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004, 20 (3), 307–315 https://doi.org/10.1093/bioinformatics/btg405
8. Irizarry R. A., Bolstad B. M., Collin F., Cope L. M., Hobbs B., Speed T. P. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2002, 31 (4), e15. https://doi.org/10.1093/nar/gng015
9. Zhao Yaxing, Limsoon Wong, Wilson Wen Bin Goh. How to do quantile normalization correctly for gene expression data analyses. Sci. Rep. 2020, 10 (15534), 1–11.https://doi.org/10.1038/s41598-020-72664-6
10. Frolova A. O, Bondarenko V. S., Obolens ka M. Yu. Cross-platform integration of experimental microarrays and its effect on the value of gene expression in the analysis of human breast cancer samples. Medychna informatyka ta inzheneriia. 2016, No 2, P. 5–14.
11. Sandberg R., Larsson O. Improved precision and accuracy for microarrays using updated probe set definitions. BMC Bioinf. 2007, 8 (1), 48. https://doi.org/10.1186/1471-2105-8-48
12. Johnson W. Evan, Cheng Li, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007, 8 (1), 118– 127. https://doi.org/10.1093/biostatistics/kxj037
13. Clifton Vicki. Sex-based functional features of human placentae. Zdorove zhenshchyni. 2011, No 4, P. 24–29. (In Ukrainian).
14. Buckberry Sam, Stephen J. Bent, Tina Bianco-Miotto, Claire T. Roberts, Author Notes. massiR: a method for predicting the sex of samples in gene expression microarray datasets. Bioinformatics. 2014, 30 (14), 2084–2085. https://doi.org/10.1093/bioinformatics/btu161
15. Venables W. N., Ripley B. D. Modern Applied Statistics with S. Springer Springer-Verlag. New York. 2002, 562 p. https://doi.org/10.1007/978-0-387-21706-2
16. Van Der Maaten, Hinton L. J. P., Hinton G. E. Visualizing High-Dimensional Data Using t-SNE. J. Machine Learning Res. 2008, V. 9, P. 2579–2605.
17. Smyth G. K. Bioinformatics and Computational Biology Solutions Using R and Bioconductor. limma: Linear Models for Microarray Data. Springer. 2005, P. 397–420. https://doi.org/10.1007/0-387- 29362-0_23
18. Szklarczyk D., Gable A. L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N. T., Morris J. H., Bork P. STRING v11: protein– protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47 (Database), D607–D613. https://doi.org/10.1093/nar/gky1131
19. Albonici L., Benvenuto M., Focaccetti C., Cifaldi L., Miele M.T., Limana F., Manzari V., Bei R. PlGF Immunological Impact during Pregnancy. Int. J. Mol. Sci. 2020, 21 (22), 8714. https://doi.org/10.3390/ijms21228714
20. Scott G. F. Morphogenesis and Cell Adhesion. Development Biology, 6th edition. Sunderland (MA): Sinauer Associates. 2000, P. 325–335.
21. Wessels I., Maywald M., Rink L. Zinc as a Gatekeeper of Immune Function. Nutrients. 2017, 9 (12), 1286. https://doi.org/10.3390/ nu9121286 22. Williams R. J. Zinc: what is its role in biology? Endeavour. 1984, 8 (2), 65–70. https://doi. org/10.1016/0160-9327(84)9004=0-1
- URRENT CONCEPT OF THE STRUCTURAL AND FUNCTIONAL PROPERTIES OF ALFA-FETOPROTEIN AND THE POSSIBILITIES OF ITS CLINICAL APPLICATION Gulevskyy O. K., Akhatova Yu. S.
- PRODUCTION AND APPLICATION OF ANGIOSTATINS FOR THE TREATMENT OF OCULAR NEOVASCULAR DISEASES Bilous V. L., Kapustianenko L. G., Tykhomyrov A. A.