ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta V. 18, No. 5, 2025
P. 5-13, Bibliography 21, Engl.
UDC: [578.8:57.083]:606
doi:https://doi.org/10.15407/biotech18.05.005
FUNCTIONALIZED MESOPOROUS SILICA NANOPARTICLES: ANALYSIS OF NEUROTOXICITY AND HEAVY METAL DETOXICATION CAPABILITY
S. O. Sotnik 1, I. M. Pavliei 1, N. G. Pozdnyakova 2, A. O. Pastukhov 2*, O. O. Pariiska 1, M. V. Dudarenko 2, N. V. Krisanova 2, R. V. Sivko 2, M. M. Driuk 2, L. M. Kalynovska 2, I. D. Panas 2, T. A. Borisova 2, S. V. Kolotilov 1
1 Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Kyiv
2 Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine; Kyiv
Aim. Mesoporous silica nanoparticles (MSN) are perspective materials for biomedical applications and environmental management.
Methods. MSN functionalized with SH groups (MSN-SH) and SO3H (MSN-SO3H) were synthesized. The content of elements in particles was determined according to EDX analysis. Assessment of neurotoxicity was performed using nerve terminals (synaptosomes).
Results. The powder diffraction patterns of MSN-SH and MSN-SO3H showed reflections in the low-angle region, which were characteristic of the MCM-41 structure. According to TEM data, the MSN-SH particles had an oval shape. Both MSN-SH and MSN-SO3H (0.25 ‒ 0.5 mg/ml) did not change the synaptosomal ambient level of excitatory neurotransmitter L-[3H] glutamate. Neither MSN-SH nor MSN-SO3H was able to detox the harmful influence of Cd2+, Pb2+, and Hg2+ in nerve terminals by mitigating Cd2+/Pb2+/Hg2+-induced neurotoxicity.
Conclusions. MSN-SH and MSN-SO3H did not demonstrate acute neurotoxicity signs, and so they are biocompatible. MSN-SH and MSN-SO3H did not mitigate acute Cd2+/Pb2+/Hg2+-induced neurotoxicity in nerve terminals, and so did not adsorb these metals in biological systems. Therefore, MSN-SH and MSN-SO3H have the potential to be used as adsorbents/carriers of other substances than heavy metals in medicine and biotechnology. From an environmental point of view, mesoporous silica nanoparticles were safe and did not bind heavy metals, thereby not serving as their carriers to the organism during dust storms.
Keywords: mesoporous silica nanoparticles, SH and SO3H groups, neurotoxicity risk, glutamate, detoxication of heavy metals, Cd2+, Pb2+, Hg2+, presynaptic brain nerve terminals.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2025
References
1. Xu, B., Li, S., Shi, R., Liu, H. (2023). Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduction and Targeted Therapy, 8(1), 435. https://doi.org/10.1038/s41392-023-01654-7
2. Niculescu, V. C. (2020). Mesoporous Silica Nanoparticles for Bio-Applications. Frontiers in Materials, 7, 36. https://doi.org/10.3389/fmats.2020.00036
3. Hudson, S. P., Padera, R. F., Langer, R., Kohane, D. S. (2008). The biocompatibility of mesoporous silicates. Biomaterials, 29(30), 4045–4055. https://doi.org/10.1016/j.biomaterials.2008.07.007
4. Tang, F., Li, L., Chen, D. (2012). Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Advanced Materials, 24(12), 1504–1534. https://doi.org/10.1002/adma.201104763
5. Buzea, C., Pacheco, I. I., Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2(4), MR17–MR71. https://doi.org/10.1116/1.2815690
6. Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M. V., Somasundaran, P., Klaessig, F., Castranova, V., Thompson, M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 8(7), 543–557. https://doi.org/10.1038/nmat2442
7. Verma, A., Stellacci, F. (2010). Effect of surface properties on nanoparticle-cell interactions. Small, 6(1), 12–21. https://doi.org/10.1002/smll.200901158
8. Jafari, S., Derakhshankhah, H., Alaei, L., Fattahi, A., Varnamkhasti, B. S., Saboury, A. A. (2019). Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomedicine and Pharmacotherapy, 109, 1100–1111. https://doi.org/10.1016/j.biopha.2018.10.167
9. Slowing, I. I., Wu, C. W., Vivero-Escoto, J. L., Lin, V. S. Y. (2009). Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small, 5(1), 57–62. https://doi.org/10.1002/smll.200800926
10. Liu, H., Wang, X., Talifu, D., Ding, X., Abulizi, A., Tursun, Y., An, J., Li, K., Luo, P., Xie, X. (2022). Distribution and sources of PM2.5-bound free silica in the atmosphere of hyper-arid regions in Hotan, North-West China. Science of the Total Environment, 810, 152368. https://doi.org/10.1016/j.scitotenv.2021.152368
11. WHO. (2024). Sand and dust storms. https://www.who.int/news-room/fact-sheets/detail/sand-and-dust-storms
12. Sotnik, S. O., Pavliei, I. M., Pariiska, O. O., Kurys, Y. I., Dudarenko, M. V, Borysov, A. А., Krisanova, N. V, Pozdnyakova, N. G., …, Borisova, T. A. (2024). Amino-grafted mesoporous silica nanoparticles: Assessment of neuromodulatory, membranotropic and antioxidant properties in cortex nerve terminals. Biotechnologia Acta, 17(6), 5–14. https://doi.org/10.15407/biotech17.06.005
13. Velusamy, P., Srinivasa, C. M., Kumar, G. V., Qurishi, Y., Su, C. H., Gopinath, S. C. B. (2018). A pH stimuli thiol modified mesoporous silica nanoparticles: Doxorubicin carrier for cancer therapy. Journal of the Taiwan Institute of Chemical Engineers, 87, 264–271. https://doi.org/10.1016/j.jtice.2018.03.048
14. Mohammadi Ziarani, G., Badiei, A., Abbasi, A., Farahani, Z. (2009). Cross‐aldol condensation of cycloalkanones and aromatic aldehydes in the presence of nanoporous silica‐based sulfonic acid (SiO 2 ‐Pr‐SO 3 H) under solvent free conditions. Chinese Journal of Chemistry, 27(8), 1537–1542. https://doi.org/10.1002/cjoc.200990259
15. Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M., Altman, D. G., NC3Rs Reporting Guidelines Working Group. (2010). Animal research: reporting in vivo experiments: the ARRIVE guidelines. British Journal of Pharmacology, 160(7), 1577–1579. https://doi.org/10.1111/j.1476-5381.2010.00872.x
16. McGrath, J. C., Drummond, G. B., McLachlan, E. M., Kilkenny, C., Wainwright, C. L. (2010). Guidelines for reporting experiments involving animals: the ARRIVE guidelines. British Journal of Pharmacology, 160(7), 1573–1576. https://doi.org/10.1111/j.1476-5381.2010.00873.x
17. Cotman, C. W. (1974). Isolation of synaptosomal and synaptic plasma membrane fractions. Methods in Enzymology, 31, 445–452. http://www.ncbi.nlm.nih.gov/pubmed/4278474 https://doi.org/10.1016/0076-6879(74)31050-6
18. Pozdnyakova, N., Krisanova, N., Pastukhov, A., Dudarenko, M., Tarasenko, A., Borysov, A., Kalynovska, L., Paliienko, K., Borisova, T. (2024). Multipollutant reciprocal neurological hazard from smoke particulate matter and heavy metals cadmium and lead in brain nerve terminals. Food and Chemical Toxicology, 185, 114449. https://doi.org/10.1016/j.fct.2024.114449
19. Krisanova, N., Pozdnyakova, N., Pastukhov, A., Dudarenko, M., Tarasenko, A., Borysov, A., Driuk, M., Tolochko, A., Bezkrovnyi, O., Paliienko, K., Sivko, R., Gnatyuk, O., Dovbeshko, G., & Borisova, T. (2024). Synergistic neurological threat from Сu and wood smoke particulate matter. Food and Chemical Toxicology, 193, 115009. https://doi.org/10.1016/J.FCT.2024.115009
20. Larson, E., Howlett, B., Jagendorf, A. (1986). Artificial reductant enhancement of the Lowry method for protein determination. Analytical Biochemistry, 155(2), 243–248. https://doi.org/10.1016/0003-2697(86)90432-X
21. Estevão, B. M., Miletto, I., Hioka, N., Marchese, L., Gianotti, E. (2021). Mesoporous Silica Nanoparticles Functionalized with Amino Groups for Biomedical Applications. ChemistryOpen, 10(12), 1251–1259. https://doi.org/10.1002/open.202100227
22. Borisova, T., Borysov, A. (2016). Putative duality of presynaptic events. Reviews in the Neurosciences, 27, 377–383. https://doi.org/10.1515/revneuro-2015-0044
23. Krisanova, N., Pastukhov, A., Dekaliuk, M., Dudarenko, M., Pozdnyakova, N., Driuk, M., Borisova, T. (2024). Mercury-induced excitotoxicity in presynaptic brain nerve terminals: modulatory effects of carbonaceous airborne particulate simulants. Environmental Science and Pollution Research International, 31(3), 3512–3525. https://doi.org/10.1007/S11356-023-31359-X/METRICS
24. Hazeri, Y., Samie, A., Ramezani, M., Alibolandi, M., Yaghoobi, E., Dehghani, S., Zolfaghari, R., Khatami, F., …, Taghdisi, S. M. (2022). Dual-targeted delivery of doxorubicin by mesoporous silica nanoparticle coated with AS1411 aptamer and RGDK-R peptide to breast cancer in vitro and in vivo. Journal of Drug Delivery Science and Technology, 71, 103285. https://doi.org/10.1016/j.jddst.2022.103285