ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta V. 18, No. 5, 2025
P. 54-66, Bibliography 41 , Engl.
UDC: 664.8:615.874:577.1
doi: https://doi.org/10.15407/biotech18.05.054
DEVELOPMENT OF FUNCTIONAL PROTEIN BARS ENRICHED WITH ENCAPSULATED GREEN TEA POLYPHENOLS
Chernenko S.O.
1 Le Petit Paris Cafe, , Jacksonville, USA
2 M.O. Grishyn Educational and Scientific Institute of Food Technologies, Odesa National University of Technology, Ukraine
Aim. To apply encapsulation of green tea polyphenols as a biotechnological solution for enriching protein bars with bioactive compounds of predictable functional effect. The study also aimed to evaluate the impact of encapsulation on antioxidant activity, controlled intestinal release, and the preservation of sensory properties without the use of synthetic additives.
Methods. Polyphenols were encapsulated via spray drying using sodium alginate and incorporated into protein bars. Antioxidant activity (DPPH), texture (TPA), sensory characteristics, and in vitro bioavailability were assessed.
Results. Encapsulation increased antioxidant activity by 126%, reduced EGCG degradation in the gastric environment, and enabled its release in the intestine. The bars retained a favorable taste and texture, while increased hardness improved mechanical stability during storage.
Conclusions. The proposed system is an effective means of stabilizing bioactives in functional protein-based products. It ensures EGCG protection, predictable bioactivity, and compatibility with industrial-scale food production, aligning with current directions in food biotechnology and human health.
Keywords: polyphenols, encapsulation, antioxidant activity, protein bars, functional foods, bioavailability
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2025
Refrences
1. Granato, D., Nunes, D. S., Barba, F. J. (2017). An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of functional foods: A proposal. Trends in Food Science & Technology, 62, 13–22. https://doi.org/10.1016/j.tifs.2016.12.010
2. Dey, T. B., Yousuf, M. (2019). Functional Foods and Nutraceuticals: Sources and Their Developmental Techniques. New India Publishing Agency. ISBN: 9789383305964.
3. Wolfram, S. (2007). Effects of green tea and EGCG on cardiovascular and metabolic health. Journal of the American College of Nutrition, 26(4), 373S–388S. https://doi.org/10.1080/07315724.2007.10719626
4. Khan, N., Mukhtar, H. (2019). Tea polyphenols in promotion of human health. Nutrients, 11(1), 39. https://doi.org/10.3390/nu11010039
5. Singh, B. N., Shankar, S., Srivastava, R. K. (2011). Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochemical Pharmacology, 82(12), 1807–1821. https://doi.org/10.1016/j.bcp.2011.07.093
6. Manach, C., Scalbert, A., Morand, C., Rémésy, C., Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727–747. https://doi.org/10.1093/ajcn/79.5.727
7. Scalbert, A., Johnson, I. T., Saltmarsh, M. (2005). Polyphenols: antioxidants and beyond. The American Journal of Clinical Nutrition, 81(1), 215S–217S. https://doi.org/10.1093/ajcn/81.1.215S
8. Fraga, C. G., Croft, K. D., Kennedy, D. O., Tomás-Barberán, F. A. (2019). The effects of polyphenols and other bioactives on human health. Food & Function, 10(2), 514–528. https://doi.org/10.1039/C8FO01997E
9. Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P., Tognolini, M., Borges, G., Crozier, A. (2013). Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling, 18(14), 1818–1892. https://doi.org/10.1089/ars.2012.4581
10. Vauzour, D., Rodriguez-Mateos, A., Corona, G., Oruna-Concha, M. J., Spencer, J. P. E. (2010). Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients, 2(11), 1106–1131. https://doi.org/10.3390/nu2111106
11. Tomás-Barberán, F. A., Andrés-Lacueva, C. (2012). Polyphenols and health: current state and progress. Journal of Agricultural and Food Chemistry, 60(36), 8773–8775. https://doi.org/10.1021/jf300671j
12. Cabrera, C., Artacho, R., & Giménez, R. (2006). Beneficial effects of green tea - A review. Journal of the American College of Nutrition, 25(2), 79–99. https://doi.org/10.1080/07315724.2006.10719518
13. Chacko, S. M., Thambi, P. T., Kuttan, R., Nishigaki, I. (2010). Beneficial effects of green tea: A literature review. Chinese Medicine, 5, 13. https://doi.org/10.1186/1749-8546-5-13
14. Yao, L. H., Jiang, Y. M., Shi, J., Tomás-Barberán, F. A., Datta, N., Singanusong, R., Chen, S. S. (2004). Flavonoids in food and their health benefits. Plant Foods for Human Nutrition, 59(3), 113–122. https://doi.org/10.1007/s11130-004-0049-7
15. Fang, Z., Bhandari, B. (2010). Encapsulation of polyphenols–a review. Trends in Food Science & Technology, 21(10), 510–523. https://doi.org/10.1016/j.tifs.2010.08.003
16. Anandharamakrishnan, C., Rielly, C. D. (2015). Techniques for nanoencapsulation of food ingredients. Springer. https://doi.org/10.1007/978-1-4939-2481-8
17. Kurek, M., Ščetar, M., Galić, K. (2019). Edible coatings enriched with plant extracts: changing the future of fresh-cut fruit preservation. Trends in Food Science & Technology, 88, 319–328. https://doi.org/10.1016/j.tifs.2019.03.021
18. Desai, K. G. H., Park, H. J. (2005). Recent developments in microencapsulation of food ingredients. Drying Technology, 23(7), 1361–1394.
https://doi.org/10.1081/DRT-200063478
19. Zhang, L., Lin, Y., Lv, S. (2020). Recent advances in alginate-based delivery systems for bioactive ingredients in food. Food Hydrocolloids, 103, 105664. https://doi.org/10.1016/j.foodhyd.2020.105664
20. Ghosh, V., Mukherjee, A., Chandrasekaran, N. (2019). Nanotechnology in food processing: Current status, future prospects and challenges. Food Science and Technology International, 25(6), 451–468. https://doi.org/10.1177/1082013219865760
21. Medina-Torres, N., Brito-De La Fuente, E., Torrestiana-Sanchez, B., Katthain, R. (2017). Microencapsulation technologies for delivering functional food ingredients. Food Engineering Reviews, 9(3), 229–244. https://doi.org/10.1007/s12393-017-9158-1
22. Sari, T. P., Mann, B., Kumar, R., Singh, R. R. B., Sharma, R., Bhardwaj, M. (2022). Application of microencapsulated bioactive ingredients in the development of functional foods: A review. Food Reviews International, 38(1), 1–26. https://doi.org/10.1080/87559129.2020.1729101
23. Panza, V. S. P., Wazlawik, E., Schütz, G. R., Comin, L., Hecht, K. C., da Silva, E. L. (2008). Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition, 24(5), 433–442. https://doi.org/10.1016/j.nut.2008.01.009
24. Basu, A., Betts, N. M., Mulugeta, A., Tong, C., Newman, E., Lyons, T. J. (2013). Green tea supplementation increases glutathione and plasma antioxidant capacity in adults with the metabolic syndrome. Nutrition Research, 33(3), 180–187. https://doi.org/10.1016/j.nutres.2012.12.010
25. Jówko, E., Sacharuk, J., Balasińska, B., Ostaszewski, P., Charmas, M., Charmas, R. (2011). Green tea extract supplementation gives protection against exercise-induced oxidative damage in healthy men. Nutrition Research, 31(11), 813–821. https://doi.org/10.1016/j.nutres.2011.09.020
26. Bojarczuk, A., Dzitkowska-Zabielska, M. (2023). Polyphenol supplementation and antioxidant status in athletes: A narrative review. Nutrients, 15(1), 158. https://doi.org/10.3390/nu15010158
27. Osakabe N., Shimizu T., Fujii Y., Fushimi T., Calabrese V. (2024). Sensory nutrition and bitterness and astringency of polyphenols. Biomolecules, 14(2), 234. https://doi.org/10.3390/biom14020234
28. Permanadewi, I., Kumoro, A.C., Wardhani, D.H., Aryanti, N. (2022). Effect of viscosity on iron encapsulation using alginate as a carrying agent in a controlled spray drying process. Food Research, 6(5), 56–67. https://doi.org/10.26656/fr.2017.6(5).613.
29. Kalalo, M. C., Susilo, A. P., Efendi, Y. (2022). Effect of sodium alginate concentration on characteristics, stability and drug release of inhalation quercetin microspheres. Jurnal Farmasi dan Ilmu Kefarmasian Indonesia, 9(2), 107–114. https://doi.org/10.20473/jfiki.v9i22022.107-114.
30. Łętocha, A., Miastkowska, M., Sikora, E. (2022). Preparation and characteristics of alginate microparticles for food, pharmaceutical and cosmetic applications. Polymers, 14(18), 3834. https://doi.org/10.3390/polym14183834.
31. International Organization for Standardization (ISO). (2005). Determination of substances characteristic of green and black tea – Part 1: Content of total polyphenols in tea – Colorimetric method using Folin–Ciocalteu reagent. ISO 14502-1:2005. ISO; Available from: https://www.iso.org/standard/31356.html
32. Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30.
https://doi.org/10.1016/S0023-6438(95)80008-5.
33. ISO 8586. (2012). Sensory analysis – General guidelines for the selection, training and monitoring of assessors. Geneva: International Organization for Standardization.
34. Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., … Recio, I. (2014). A standardized static in vitro digestion method suitable for food – an international consensus. Food & Function, 5(6), 1113–1124. https://doi.org/10.1039/C3FO60702J
35. Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., Bohn, T., Bourlieu-Lacanal, C., … Mackie, A. R. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 14(4), 991–1014. https://doi.org/10.1038/s41596-018-0119-1
36. Piñón-Balderrama, C.I., Leyva-Porras, C., Terán-Figueroa, Y., Espinosa-Solís, V., Álvarez-Salas, C., Saavedra-Leos, M.Z. (2020). Encapsulation of active ingredients in food industry by spray-drying and nano spray-drying technologies. Processes, 8(8), 889. https://doi.org/10.3390/pr8080889
37. Nájera-Martínez, E.F., Flores-Contreras, E.A., Araújo, R.G., Iñiguez-Moreno, M., Sosa-Hernández, J.E., Iqbal, H.M.N., Pastrana, L.M., Melchor-Martínez, E.M., Parra-Saldívar, R. (2023). Microencapsulation of gallic acid based on a polymeric and pH-sensitive matrix of pectin/alginate. Polymers, 15(14), 3014. https://doi.org/10.3390/polym15143014
38. Khoshdouni Farahani, Z., Mousavi, M., Seyedain Ardebili, M., Bakhoda, H. (2022). The influence of sodium alginate and sodium alginate/WPI as coating material on microcapsules of Jujube extract produced by spray dryer. Journal of Food Processing and Preservation, 46(12), e17175. https://doi.org/10.1111/jfpp.17175
39. Shahidi F, Ambigaipalan P. (2015). Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects – a review. J Funct Foods, 18, 820–897. https://doi.org/10.1016/j.jff.2015.06.018
40. Pokorny J. (2007). Are natural antioxidants better – and safer – than synthetic antioxidants? Eur J Lipid Sci Technol. 109(6), 629–642. https://doi.org/10.1002/ejlt.200700064
41. Balasundram N, Sundram K, Samman S. (2006). Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 99(1), 191–203. https://doi.org/10.1016/j.foodchem.2005.07.042