ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 18, No. 3, 2025
P. 23-33 , Bibliography 53 , Engl.
UDC 581.6:582.37:631.5:577.175.1
doi:https://doi.org/10.15407/biotech18.03.023
Full text: (PDF, in English)
THE EFFECT OF GIBBERELLIC ACID (GA₃) ON GROWTH, PHOTOSYNTHETIC PIGMENTS, AND METAL BIOSORPTION IN THE WATER FERN SALVINIA NATANS UNDER ZINC STRESS
V.A. Vasyuk, M.M. Shcherbatiuk, L.V. Voytenko, K.O. Romanenko, I.V. Kosakivska
M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine
Aim. This study investigates the impact of exogenous gibberellic acid (GA₃) on growth, photosynthetic pigment content, and zinc biosorption by sporophytes of the water fern Salvinia natans at both the initial and final stages of ontogeny.
Methods. The ability of S. natans sporophytes to remove zinc from the aquatic environment was assessed by analyzing water samples post-cultivation using a portable Macherey-Nagel PF-12 Plus photometer. Photosynthetic pigments were extracted with 100% acetone and quantified using a Jenway UV-6850 spectrophotometer (UK) at wavelengths of 662, 664, and 440.5 nm, with acetone serving as the control.
Results. At both the intensive growth stage and the phase of sorus formation and spore maturation, exogenous GA₃ enhanced fresh and dry biomass accumulation in S. natans sporophytes, increased chlorophyll content, and alleviated the adverse effects of zinc sulfate. These morphological and physiological improvements were more pronounced in mature sporophytes. The study also confirmed the ability of S. natans sporophytes to biosorb zinc ions from the aquatic environment, with zinc uptake in young sporophytes increasing by 10% upon GA₃ application.
Conclusions. During its intensive growth phase, S. natans effectively removes zinc compounds from water, demonstrating its potential for phytoremediation. Exogenous GA₃ (10⁻⁶ M) mitigates the toxic effects of zinc (10 mg L⁻¹), enhancing growth and photosynthetic pigment content. Observable phenotypic changes in response to zinc toxicity further suggest that S. natans could serve as a bioindicator of water pollution.
Keywords: Salvinia natans, zinc, gibberellins, growth, photosynthetic pigments, biosorption
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2025
References
- Saha A., Mukherjee P., Roy K., Sen K., Sanyal T. A review on phyto-remediation by aquatic macrophytes: A natural promising tool for sustainable management of ecosystem. J. Res. Rev. 2022, 27: 9-31. https://doi.org/10.52756/ijerr.2022.v27.002
- Kosakivska I.V., Vedenicheva N.P., Shcherbatiuk M.M., Voytenko L.V., Vasyuk V.A. Water ferns of Salviniaceae family in phytoremediation and phytoindication of contaminated water: a review. Acta. 2022, 15(5): 5-23 https://doi.org/10.15407/biotech15.05.005
- Suñe N., Sánchez G., Caffaratti S., Maine M.A. Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Pollut. 2007, 145(2): 467-73. https://doi.org/10.1016/j.envpol.2006.04.016
- Iha D. S., Jr I.B. Phytoremediation of Cd, Ni, Pb and Zn by Salvinia minima. J. Phytoremediation. 2015, 17(10): 929-935. https://doi.org/10.1080/15226514.2014.1003793
- Dhir B., Sharmila P., Saradhi P.P., Sharma S., Kumar R., Mehta D. Heavy metal induced physiological alterations in Salvinia natans. Ecotoxicol. Environ. 2011, 74(6): 1678-1684. https://doi.org/10.1016/j.ecoenv.2011.05.009
- Hołtra A., Zamorska-Wojdyła D. Bioaccumulation capacities of copper (II) ions in Salvinia natans. Prot. Eng. 2014, 40(4): 41-51. https://doi.org/10.37190/EPE140404
- Kosakivska I.V., Vasyuk V.A., Shcherbatiuk M.M., Voytenko L.V., Romanenko K.O. Impact of exogenous zeatin on the growth, pigment complex and capacity of sporophytes of Salvinia natans (Salviniaceae) for biological extraction of zinc from the water. Bot. J. 2024, 81(6): 406-416. https://doi.org/10.15407/ukrbotj81.06.443
- Galka A., Szmeja J. Phenology of the aquatic fern Salvinia natans (L.) All. in the Vistula Delta in the context of climate warming. Limnologica. 2013, 43: 100-105. https://doi.org/10.1016/j.limno.2012.07.001
- Babenko L., Vasheka O., Shcherbatiuk , Romanenko P., Voytenko L., Kosakivska I. Biometric characteristics and surface microstructure of vegetative and reproductive organs of heterosporous water fern Salvinia natans. Flora. 2019, 252: 44-50. https://doi.org/10.1016/j.flora.2019.02.006
- Dhir B., Srivastava S. Heavy metal tolerance in metal hyperaccumulator plant, Salvinia natans. Bull Environ. Contam. Toxicol. 2013, 90(6): 720-72 https://doi.org/10.1007/s00128-013-0988-5
- Loría K.C., Emiliani J., Bergara C.D., Herrero M.S., Salvatierra L.M., Pérez L.M. Effect of daily exposure to Pb-contaminated water on Salvinia biloba physiology and phytoremediation performance. Aquat Toxicol. 2019, 210: 158-166. https://doi.org/10.1016/j.aquatox.2019.02.019
- Dal Corso Heavy metal toxicity in plants. In: Furini A. (Ed.) Plants and heavy metals. Springer. 2012, pp 1-25. http://dx.doi.org/10.1007/978-94-007-4441-7_ 1
- Küpper H., Andresen E. Mechanisms of metal toxicity in plants. Metallomics. 2016, 8(3): 269-285. http://dx.doi.org/10.1039/C5MT00244C
- Nowicka B. Heavy metal–induced stress in eukaryotic algae – mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. Environ. Pollut. Res. 2022, 29: 16860-16911. https://link.springer.com/article/10.1007/s11356-021-18419-w
- Bielen A., Remans T., Vangronsveld J., Cuypers A. The influence of metal stress on the availability and redox state of ascorbate, and possible interference with its cellular functions. Int. J. Mol. 2013, 14: 6382-6413. https://doi.org/10.3390/ijms14036382
- NguyenQ., Sesin V., Kisiala A., Neil Emery R.J. Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems. Environ. Toxicol. Chem. 2001, 40(1): 7-22. https://doi.org/10.1002/etc.4909
- Zhang Y., Yang C., Liu S., Xie Z., Chang H., Wu T. Phytohormones-mediated strategies for mitigation of heavy metals toxicity in plants focused on sustainable production. Plant Cell Rep. 2024, 43(4): article number 99. https://doi.org/10.1007/s00299-024-03189-9
- Kosakivska I.V., Babenko L.M., Shcherbatiuk M.M., Vedenicheva N.P., Voytenko L.V., Vasyuk V.A. Phytohormones during growth and development of Polypodiophyta. ABES. 2016, 1(1): 26−44. link
- Kosakivska I.V., Vedenicheva N.P., Shcherbatiuk M.M., Voytenko L.V., Vasyuk V.A. Phytohormones in the regulation of growth and development of water ferns of Salviniaceae family: mini review. Studia Biologica. 2023, 17(3): 189-210. http://dx.doi.org/10.30970/sbi.1703.721
- Roopa B., Premalatha S.J., Manjula A.C., Bhattacharya S., Prasad G.V., Reddy V.D., ShrivastavaR., Patil S.J. Role of Gibberellin in Plant Growth, Development and Senescence. Chem. Bull. 2024, 12(10): 1-08. http://dx.doi.org/10.48047/ecb/2023.12.si10.0xyz
- Emamverdian A., Ding Y., Mokhberdoran F. 2020 The role of salicylic acid and gibberellin signaling in plant responses to abiotic stress with an emphasis on heavy metals. Plant Signal Behav. 2020, 15(7): https://doi.org/10.1080/15592324.2020.1777372
- Kosakivska I.V., Vasyuk V.A. Gibberellins in regulation of plant growth and development under abiotic stresses. Biotechnologia Acta. 2021, 14(2): 5-18. https://doi.org/10.15407/biotech14.02.005
- Saijo Y., Loo E.P.I. Plant immunity in signal integration between biotic and abiotic stress responses. New Phytologist. 2020, 225(1): 87-104. https://doi.org/10.1111/nph.15989
- Castro-Camba R., Sánchez C., Vidal N., Vielba J.M. Interactions of Gibberellins with Phytohormones and Their Role in Stress Responses. Horticulturae. 2022, 8(3): https://doi.org/10.3390/horticulturae8030241
- Gaudet, J.J., Koh D.V. (1968). Effect of Various Growth Regulators on Salvinia rotundifolia in Sterile Culture. Torrey Botanic. Club. 1968, 95(1): 92–102.
- Rai R., Agrawal M., Agrawal S.B. Impact of Heavy Metals on Physiological Processes of Plants: With Special Reference to Photosynthetic System. In: Singh A., Prasad S., Singh R. (eds) Plant Responses to Xenobiotics. Springer, Singapore. 2016. http://dx.doi.org/10.1007/978-981-10-2860-1_6
- Mohan B.S., Hosetti B.B. Phytotoxicity of cadmium on the physiological dynamics of Salvinia natans grown in macrophyte ponds. J Environ Biol. 2006, 27(4): 701-704. https://europepmc.org/article/med/17405334
- Dhir B., Sharmila P., Saradhi P.P. Photosynthetic performance of Salvinia natans exposed to chromium and zinc rich wastewater. J. Plant Physiol. 2008, 20(1): 61-70. https://doi.org/10.1590/S1677-04202008000100007
- Leblebici Z., Kar M., Yalçın V. Comparative study of Cd, Pb, and Ni removal potential by Salvinia natans (L.) All. and Lemna minor: interactions with growth parameters. Rom. Biotechnol. Lett. 2018, 23(1): 13235-13248. https://acikerisim.nevsehir.edu.tr/handle/20.500.11787/5030
- Sitarska M., Traczewska T., Filarowska W., Hołtra A., Zamorska-Wojdyła D., Hanus-Lorenz B. Phytoremediation of mercury from water by monocultures and mixed cultures pleustophytes. Water Process Eng. 2023, 52: 103529. https://pubmed.ncbi.nlm.nih.gov/37389751/
- Kosakivska I.V., Voytenko L.V., Vedenicheva N.P., Vasyuk V.A., Shcherbatiuk M.M., Romanenko K.O. The influence of exogenous phytohormones and zinc sulfate on the morpho-physiological characteristics of Salvinia natans (Salviniaceae). Bot. J. 2024, 81(2): 167–180 [In Ukrainian]. https://doi.org/10.15407/ukrbotj81.02.167
- Wilson P.J., Thomson K., Hodgson J.G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist. 1999, 143(1): 155-162. https://doi.org/10.1046/j.1469-8137.1999.00427.x
- Vaieretti M.V., Díaz S., Vile D., Garnier E. Two measurement methods of leaf dry matter content produce similar results in a broad range of species. Bot. 2007, 99(5): 955-958. https://doi.org/10.1093/aob/mcm022
- Kosakivska I.V., Shcherbatiuk M.M., Babenko L.M., Polishchuk O.V. Characteristics of photosynthetic apparatus of aquatic fern Salvinia natans floating and submerged fronds. ABES. 2018, 3(1): 13-26. http://jomardpublishing.com/UploadFiles/Files/journals/ABES/V3N1/KasakivskaI.pdf
- Balafrej H., Bogusz D., Triqui ZA., Guedira A., Bendaou N., Smouni A., Fahr M. Zinc hyperaccumulation in plants: a review. Plants (Basel). 2020, 9(5): 562. https://doi.org/10.3390/plants9050562
- Lichtenthaler H.K., Babani F. Light Adaptation and Senescence of the Photosynthetic Apparatus. Changes in Pigment Composition, Chlorophyll Fluorescence Parameters and Photosynthetic Activity. In: Papageorgiou, G.C., Govindjee (eds) Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration. Springer, Dordrecht. 2004: 716-720. http://dx.doi.org/10.1007/978-1-4020-3218-9_28
- Gomes S.M., De S., De Lima V.L.A., De Souza A.P., Do Nascimento J.J.V.R., Do Nascimento E.S. Chloroplast pigments as indicators of lead stress. Eng Agríc. 2014, 34(5): 877-884. https://doi.org/10.1590/S0100-69162014000500007
- Prado C., Ponce C.S., Pagano E., Prado F.E., Rosa M. Differential physiological responses of two Salvinia species to hexavalent chromium at a glance. Aquat Toxicol. 2016, 175: 213-221. https://doi.org/10.1016/j.aquatox.2016.03.027
- Leal-Alvarado D.A., Espadas-Gil F., Sáenz-Carbonell L., Talavera-May C., Santamaría J.M. Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima Baker by affecting the cell membrane and inducing stomatal closure. Aquat Toxicol. 2016, 171: 37-47. https://doi.org/10.1016/j.aquatox.2015.12.008
- Fuentes I.I., Espadas-Gil F., Talavera-May C., Fuentes G., Santamaría J.M. Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues, and its effect on plant physiological processes. Aquat Toxicol. 2014, 155: 142-150. http://dx.doi.org/10.1016/j.aquatox.2014.06.016
- Falkowska M., Pietryczuk A., Piotrowska A., Bajguz A., Grygoruk A., Czerpak R. The effect of gibberellic acid (GA3) on growth, metal biosorption and metabolism of the green algae Chlorella vulgaris (Chlorophyceae) Beijerinck exposed to cadmium and lead stress. J. Environ. Stud. 2011, 20(1): 53-59. https://www.pjoes.com/pdf-88529-22388?filename=22388.pdf
- Sharaf A.E.M., Farghal I.I., Sofy M.R. Role of gibberellic acid in abolishing the detrimental effects of Cd and Pb on broad bean and lupin plants. J. Agric. Sci. 2009, 5(5): 668-673. https://www.aensiweb.net/AENSIWEB/rjabs/rjabs/2009/668-673.pdf
- Siddiqui M.H., Al-Whaibi M.H., Basalah M.O. Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum Protoplasma. 2011, 248: 503-511. https://doi.org/10.1007/s00709-010-0197-6
- Shah S.H., Islam S., Mohammad F., Siddiqui M.H. Gibberellic Acid: A Versatile Regulator of Plant Growth, Development and Stress Responses. Plant Growth Regul. 2023, 42(12):1-22. https://doi.org/10.1007/s00344-023-11035-7
- Piotrowska-Niczyporuk A., Bajguz A., Zambrzycka E., Godlewska-Żyłkiewicz B. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol. Biochem. 2012, 52: 52-65. https://doi.org/10.1016/j.plaphy.2011.11.009
- Zhu X.F., Jiang T., Wang Z.W., Shi Y.Z., Li G.X., Zheng S.J. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J. Hazard. Mater. 2012, 239-240: 302-307. https://doi.org/10.1016/j.jhazmat.2012.08.077
- Sun S., Wang H., Yu H., Zhong C., Zhang X., Peng J., Wang X. GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. J Exp. Bot. 2013, 64 (6): 1637-1647. https://doi.org/10.1093/jxb/ert021
- Koprivova A., North K.A., Kopriva S. Complex signaling network in regulation of adenosine 5′‐phosphosulfate reductase by salt stress in Arabidopsis Plant Physiol. 2008, 146: 1408-1420. https://doi.org/10.1104/pp.107.113175
- On Approval of Hygienic Water Quality Standards for Water Bodies to Meet Drinking, Domestic and Other Needs of the Population: Resolution of the Ministry of Health of Ukraine of May 02, 2022. №721. URL: https://zakon.rada.gov.ua/laws/show/z0524-22#Text (date of the request: 10.05.2023) [In Ukrainian].